欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2023, Vol. 40 ›› Issue (5): 658-669.DOI: 10.7523/j.ucas.2022.023

• 电子信息与计算机科学 • 上一篇    下一篇

基于超像素与LightGBM的极化SAR图像地物分类

王懿泽1,2, 孙吉利1, 闫成杰1,2, 张政1,2   

  1. 1. 中国科学院空天信息创新研究院, 北京 100190;
    2. 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2022-01-12 修回日期:2022-03-25 发布日期:2022-04-07
  • 通讯作者: 王懿泽,E-mail:wangyize19@mails.ucas.ac.cn
  • 基金资助:
    国家重点研发计划(2021YFC2803300)和国家自然科学基金青年基金(61901442,61901445)资助

Polarimetric SAR image terrain classification based on superpixel and LightGBM

WANG Yize1,2, SUN Jili1, YAN Chengjie1,2, ZHANG Zheng1,2   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-01-12 Revised:2022-03-25 Published:2022-04-07

摘要: 极化合成孔径雷达(SAR)图像的相干斑噪声降低了地物分类的准确率;联合极化SAR图像众多特征分类,过大的输入特征维度导致分类耗时长。为解决上述问题,提出一种基于超像素与LightGBM的分类算法。该算法充分利用极化SAR图像的极化特征与纹理特征,具备较强的分类能力;采用LightGBM处理大维度输入特征,能够快速得到基于像素的初级分类结果;利用SLIC生成基于超像素的极化SAR图像,并在各超像素内逐像素投票得到基于超像素的二级分类结果,抑制了相干斑的影响。利用实测极化SAR数据进行实验,分类的总体准确率超过97%,且分类耗时短。

关键词: 极化合成孔径雷达, 地物分类, 超像素, SLIC, LightGBM

Abstract: Speckle noise of polarimetric synthetic aperture radar(SAR) image reduces the accuracy of terrain classification. Combine multiple features of polarimetric SAR image to do classification, and the large dimension of input features consumes too much time. To handle the above problems, we propose a classification algorithm based on superpixel and LightGBM. With polarimetric features and texture features, the algorithm is good at classification. LightGBM is used to deal with large dimension of input features, which can obtain the pixel-based first-level classification result efficiently. SLIC is used to generate the superpixel-based polarimetric SAR image, and the superpixel-based two-level classification result is obtained by voting pixel by pixel in each superpixel, which solves the influence of speckle noise. Experimental results, using the measured polarimetric SAR data, show that the overall classification accuracy is more than 97%, and it has a low time-consuming.

Key words: polarimetric SAR, terrain classification, superpixel, SLIC, LightGBM

中图分类号: