欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

用于细粒度图像分类的层级注意力双重网络

杨涛, 王改华   

  1. 天津科技大学人工智能学院,天津, 300457
  • 收稿日期:2023-12-14 修回日期:2024-03-25 发布日期:2024-04-07

Dual networks with hierarchical attention for fine-grained image classification*

YANG Tao, WANG Gaihua   

  1. College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin, 300457, China
  • Received:2023-12-14 Revised:2024-03-25 Published:2024-04-07
  • Contact: †E-mail:wanggh@tust.edu.cn
  • Supported by:
    *National Natural Science Foundation of China (61601176)

摘要: 本文提出了一种用于细粒度图像分类的层级注意力双重网络。双重网络可以从数据集中随机选择成对的输入,通过层次注意力特征学习比较它们之间的差异,这有利于消除噪声的同时保留显著特征。在损失函数设计中,根据类内差异和类间差异,考虑了成对图像之间差异损失的计算。除此之外,我们通过遥感图像搜集了灾害场景数据集,这些数据集包含了各种复杂场景和多种灾害类型。论文将设计的方法应用在该灾害场景分类中。与其他方法相比,实验结果显示层级注意力双重网络在不同的数据集上具有较好的鲁棒性,取得了更好的性能指标。

关键词: 双重网络, 细粒度图像分类, 层级注意力特征

Abstract: In this paper, we propose hierarchical attention dual network for fine-grained image classification. The dual network can randomly select pairs of inputs from dataset and compare the differences between them through hierarchical attention features learning, which are used simultaneously to remove noise and retain salient features. In the loss function, it considers the losses of difference in paired images according to the intra-variance and inter-variance. In addition, we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification, which contain complex scenes and multiple types of disasters. Compared to other methods, experimental results show that the dual network with hierarchical attention is robust to different datasets and performs better.

Key words: Dual network, Fine-grained image classification, Hierarchical attention features

中图分类号: