欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2025, Vol. 42 ›› Issue (6): 823-831.DOI: 10.7523/j.ucas.2024.012

• 电子信息与计算机科学 • 上一篇    下一篇

基于双分支特征融合卷积神经网络的高分辨距离像船只目标识别

朱思键1,2, 齐向阳1, 范怀涛1   

  1. 1 中国科学院空天信息创新研究院, 北京 100190;
    2 中国科学院大学电子电气与通信工程学院, 北京 100049
  • 收稿日期:2023-11-06 修回日期:2024-03-28 发布日期:2024-04-24
  • 通讯作者: 齐向阳, E-mail:qixy@mail.ie.ac.cn
  • 基金资助:
    中国科学院空天信息创新研究院科学与颠覆性技术项目(E2Z216010F)资助

HRRP ship targets recognition based on double branches feature fusion convolutional neural network

ZHU Sijian1,2, QI Xiangyang1, FAN Huaitao1   

  1. 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-11-06 Revised:2024-03-28 Published:2024-04-24

摘要: 为提高雷达高分辨距离像船只目标识别准确率,提出一种基于双分支特征融合卷积神经网络的船只目标识别方法。设计了提取不同层次特征的2个分支。使用堆叠卷积层结构且降采样次数少的细节分支,提取船只的高分辨率局部特征;使用模块化结构组成全局分支,提取船只的低分辨率全局姿态特征。根据特征图通过2个分支后的维度变化,在特征融合模块中对2种特征进行尺寸调整,相互融合并输出识别结果。实验结果显示,所提方法与传统识别方法相比,收敛更快、参数量更少且具有更高的准确性,验证了其在高分辨距离像船只分类任务上的有效性。

关键词: 船只目标识别, 高分辨距离像, 卷积神经网络, 特征融合

Abstract: To improve the accuracy of radar high resolution range profile ship target recognition, a ship target recognition method based on dual-branch feature fusion convolutional neural network model is proposed. Two branches are designed to extract features at different levels. The method designs a stacked convolutional detail branch with reduced downsampling to extract high resolution local features of ships. The global branch is composed of a modular structure used to extract low resolution global attitude features of ships. Based on the dimensional changes of the feature map after passing through two branches, the two features are changed in size separately in the feature fusion module, and the features are fused with each other to output recognition results. The experimental results show that the proposed method has faster convergence, fewer parameters, and higher accuracy compared to traditional recognition methods, verifying its effectiveness in HRRP ship classification.

Key words: ship target recognition, high resolution range profile, CNN, feature fusion

中图分类号: