[1] Olivier R, Cao H Q.Nearest neighbor value interpolation[J]. International Journal of Advanced Computer Science and Applications, 2012, 3(4):25-30. DOI: 10.14569/ijacsa.2012.030405. [2] Zhang X G.A new kind of super-resolution reconstruction algorithm based on the ICM and the bilinear interpolation[C]//2008 International Seminar on Future BioMedical Information Engineering. December 18-18, 2008, Wuhan, China. IEEE, 2009: 183-186. DOI: 10.1109/FBIE.2008.44. [3] Zhang X G.A new kind of super-resolution reconstruction algorithm based on the ICM and the bicubic interpolation[C]//2008 International Symposium on Intelligent Information Technology Application Workshops. December 21-22, 2008, Shanghai, China. IEEE, 2008: 817-820. DOI: 10.1109/IITA.Workshops.2008.12. [4] Rasti P, Demirel H, Anbarjafari G.Image resolution enhancement by using interpolation followed by iterative back projection[C]//2013 21st Signal Processing and Communications Applications Conference (SIU). April 24-26, 2013, Haspolat, Turkey. IEEE, 2013: 1-4. DOI: 10.1109/SIU.2013.6531593. [5] Wheeler F W, Hoctor R T, Barrett E B.Super-resolution image synthesis using projections onto convex sets in the frequency domain[C]//Proc SPIE 5674, Computational Imaging III, 2005, 5674: 479-490. DOI: 10.1117/12.605436. [6] 李利, 尹增山, 石神. 联合L1和L0先验模型的超分辨率重建算法[J]. 中国科学院大学学报, 2022, 39(3): 369-376. DOI: 10.7523/j.ucas.2020.0013. [7] 浦剑, 张军平, 黄华. 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27-32. [8] Dong C, Loy C C, He K M, et al.Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281. [9] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision. Cham: Springer, 2016: 391-407.10.1007/978-3-319-46475-6_25. [10] Kim J, Lee J K, Lee K M.Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 1646-1654. DOI: 10.1109/CVPR.2016.182. [11] Lim B, Son S, Kim H, et al.Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 1132-1140. DOI: 10.1109/CVPRW.2017.151. [12] Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//European Conference on Computer Vision. Cham: Springer, 2018: 294-310.10.1007/978-3-030-01234-2_18. [13] Ledig C, Theis L, Huszár F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 105-114. DOI: 10.1109/CVPR.2017.19. [14] Wang X T, Yu K, Wu S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//European Conference on Computer Vision. Cham: Springer, 2019: 63-79.10.1007/978-3-030-11021-5_5. [15] Wang X T, Yu K, Dong C, et al.Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 606-615. DOI: 10.1109/CVPR.2018.00070. [16] Szegedy C, Ioffe S, Vanhoucke V, et al.Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. February 4 - 9, 2017, San Francisco, California, USA. New York: ACM, 2017: 4278-4284. DOI: 10.5555/3298023.3298188. [17] Huang H M, Lin L F, Tong R F, et al.UNet 3: A full-scale connected UNet for medical image segmentation[C]//ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). May 4-8, 2020, Barcelona, Spain. IEEE, 2020: 1055-1059. DOI: 10.1109/ICASSP40776.2020.9053405. [18] Miyato T, Kataoka T, Koyama M, et al. Spectral normalization for generative adversarial networks[EB/OL].(2018-02-16)[2023-01-30] 2018: arXiv: 1802.05957.https://doi.org/10.48550/arXiv.1802.05957. [19] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision. Cham: Springer, 2016: 694-711.10.1007/978-3-319-46475-6_43. [20] Bruna J, Sprechmann P, LeCun Y. Super-resolution with deep convolutional sufficient statistics[EB/OL]. (2015-11-18)[2023-01-30]2015: arXiv: 1511.05666.https://doi.org/10.48550/arXiv.1511.05666. [21] Dosovitskiy A, Brox T.Generating images with perceptual similarity metrics based on deep networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 658-666. DOI: 10.5555/3157096.3157170. [22] Zhao H, Gallo O, Frosio I, et al.Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. DOI: 10.1109/TCI.2016.2644865. [23] Wang X T, Xie L B, Dong C, et al.Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). October 11-17, 2021, Montreal, BC, Canada. IEEE, 2021: 1905-1914. DOI: 10.1109/ICCVW54120.2021.00217. [24] Korhonen J, You J Y.Peak signal-to-noise ratio revisited: Is simple beautiful?[C]//2012 Fourth International Workshop on Quality of Multimedia Experience. July 5-7, 2012, Melbourne, VIC, Australia. IEEE, 2012: 37-38. DOI: 10.1109/QoMEX.2012.6263880. [25] Wang Z, Bovik A C, Sheikh H R, et al.Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612. DOI: 10.1109/tip.2003.819861. [26] Heusel M, Ramsauer H, Unterthiner T, et al.GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4 - 9, 2017, Long Beach, California, USA. New York: ACM, 2017: 6629-6640. DOI: 10.5555/3295222.3295408. [27] Zhang R, Isola P, Efros A A, et al.The unreasonable effectiveness of deep features as a perceptual metric[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 586-595. DOI: 10.1109/CVPR.2018.00068. [28] Mittal A, Soundararajan R, Bovik A C.Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212. DOI: 10.1109/LSP.2012.2227726. |