欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

面向真实场景的高分辨率遥感影像超分辨率重建*

赵佳祎1,2,3, 马勇1,2†, 陈甫2, 姚武韬2, 尚二萍2, 仉淑艳2, 龙安4   

  1. 1.海南省地球观测重点实验室, 中国科学院空天信息研究院海南研究院 海南 三亚 572029;
    2.中国科学院空天信息创新研究院,北京100094;
    3.中国科学院大学,北京100049;
    4.广西壮族自治区环境应急与事故调查中心 ,南宁 530028
  • 收稿日期:2023-01-30 修回日期:2024-05-21 发布日期:2024-06-11
  • 通讯作者: E-mail:mayong@aircas.ac.cn
  • 基金资助:
    *海南省重点研发计划(ZDYF2021SHFZ260)、海南自然科学青年基金(520QN295)和广西创新驱动发展专项资金项目(桂科AA20302022)资助

Super-resolution reconstruction of high-resolution remote sensing images for real scenes

ZHAO Jiayi1,2,3, MA Yong1,2, CHEN Fu2, YAO Wutao2, SHANG Erping2, ZHANG Shuyang2, LONG An4   

  1. 1. Key Laboratory of Earth Observation in Hainan Province, Hainan Research Institute, Aerospace Information Research Institute, Chinese Academy of Sciences, Sanya 572029, Hainan, China;
    2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
    3 University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Guangxi Zhuang Autonomous Region Environmental Emergency and Accident Investigation Center, Nanning 530028, China
  • Received:2023-01-30 Revised:2024-05-21 Published:2024-06-11

摘要: 超分辨率技术以其灵活、低成本等特点已经成为构建高分辨率数据集以及补充高分辨率影像不足的重要手段。相较于自然图像,反映真实场景的遥感影像由于自身的复杂性与特殊性加大了超分辨率任务难度,同时对于遥感影像,传统的深度学习模型虽然在一定程度上可以提高分辨率,但是对于地物细节和纹理的提升还存在着很大的不足。因此本文在对抗生成网络模型的基础上,融合通道-空间注意力来增强网络的特征学习能力,并使用伪影抑制策略来区分平滑区域和细节丰富区域,让网络专注于细节丰富区域,抑制伪影的产生。在高分卫星数据上的大量实验表明,本文的定量指标和视觉质量优于目前主流的方法。

关键词: 超分辨率, 遥感影像, 对抗生成网络, 融合通道-空间注意力, 伪影抑制

Abstract: Super-resolution technology has become an important tool for reconstructing high-resolution datasets and supplementing the shortage of high-resolution images with its characteristics of flexibility and low cost. Compared with natural images, remote sensing images of real scenes are complexity and specificity, which make super-resolution tasks more difficult. Meanwhile, for remote sensing images, traditional deep learning models can improve the resolution, but there is still a great deficiency of improvement for the details and textures of the ground objects. Therefore, based on the generative adversarial network model, this paper fuses channel-space attention to enhance the feature learning capability of the network and use artifact suppression strategy to distinguish smooth regions from detail-rich regions, so that the network can focus more on detail-rich regions and suppress the generation of artifacts. Extensive experiments on GaoFen satellite data show that the quantitative metrics and visual quality of the method proposed in this paper are better than that of the current mainstream methods.

Key words: Super resolution, Remote sensing images, GAN, Fusing channel-space attention, Artifact suppression

中图分类号: