欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于形状和边判别的三维模型无监督配准*

蒋宇涛, 刁俊淇, 肖俊, 王颖   

  1. 中国科学院大学人工智能学院,北京 100049
  • 收稿日期:2024-03-24 修回日期:2024-05-23 发布日期:2024-06-11
  • 通讯作者: E-mail:xiaojun@ucas.ac.cn
  • 基金资助:
    *国家自然科学基金项目(U21A20515, 62102393, 62206263, 62271467)、北京市自然科学基金项目(4242053)、中国博士后科学基金(2022T150639, 2021M703162)、机器人技术与系统国家重点实验室开放研究课题(SKLRS-2022-KF-11)和中央高校基本科研业务费专项资金资助

Unsupervised 3D registration of articulated shapes by shape and edge regularization

JIANG Yutao, DIAO Junqi, XIAO Jun, WANG Ying   

  1. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-03-24 Revised:2024-05-23 Published:2024-06-11

摘要: 非刚性三维模型的配准在动画驱动、纹理传递、语义理解等不同应用领域具有广泛的应用,是计算机图形学的重要研究话题。然而基于骨架变形的非刚性物体,如人体、动物,往往按照关节的运动变化带动整体的形状变形。因而该类物体的非刚性变形和复杂的相互作用,给三维配准任务带来了困难和挑战。尽管近期的研究利用深度学习技术在重建具有骨架结构的三维形状时可以取得不错的效果,但这些方法往往严重依赖于大型带标注的数据集。在无监督的情况下,依然容易生成过度拉伸和部分交叉的模型网格。论文针对三维模型的配准问题,提出了一种基于GAN的无监督网络框架,利用三维生成器生成拟合扫描点云的模型网格,同时使用两个新型的判别器对变形网格进行正则化约束,在公开数据集上取得了较好的实验效果。

关键词: 三维重建, 三维配准, 对抗网络, 非刚性物体

Abstract: Registration of non-rigid 3D models has a wide range of applications in different application areas such as animation driving, texture transfer, semantic understanding, etc. and is an important research topic in computer graphics.However, non-rigid objects based on skeletal deformation, such as human bodies and animals, often induce overall shape deformations in accordance with the movements of the joints. The non-rigid deformations and complex interactions of such objects thus pose difficulties and challenges to the 3D alignment task. Although recent studies using deep learning techniques can achieve good results in reconstructing 3D shapes with skeleton structures, these methods tend to rely heavily on large datasets with annotations. In the unsupervised case, they are still prone to generating overstretched and partially crossed model meshes.The paper proposes an unsupervised GAN-based network framework for the registration of 3D models, using a 3D generator to generate model meshes that fits the scanned point clouds, and two novel discriminators to impose regularization constraints on the deformed meshes, which achieves good results on public datasets.

Key words: 3D human reconstruction, 3D registration, adversarial networks, non-rigid objects

中图分类号: