[1] Schröder-Hinrichs J, Song D W, Fonseca T, et al. Transport2040: Automation, technology, employment-the future of work[J]. TransportRN: Other Transportation, 2019, n. DOI:10.21677/itf.2019.01.04. [2] Zhang J.Aeronautical mobile communication: The evolution from narrowband to broadband[J]. Engineering, 2021, 7(4). DOI:10.1016/j.eng.2021.02.002. [3] Neji N, de Lacerda R, Azoulay A, et al. Survey on the future aeronautical communication system and its development for continental communications[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 182-191. DOI: 10.1109/TVT.2012.2207138. [4] 朱永文, 喻兰辰晖. L波段数字航空通信系统研究[J].南京航空航天大学学报, 2022, 54(4): 700-714. DOI:10.16356/j.1005-2615.2022.04.017. [5] Gräupl T, Ehammer M. LDACS1 data link layer evolution for ATN/IPS[C]//2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Seattle, WA, USA. IEEE, 2011: 4C4-1-4C4-16. DOI: 10.1109/DASC.2011.6095906. [6] Mäurer N, Gräupl T, Schmitt C.Evaluation of the LDACS cybersecurity implementation[C]//2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE, 2019: 1-10. DOI: 10.1109/DASC43569.2019.9081786. [7] Bellido-Manganell M A, Gräupl T, Heirich O, et al. LDACS flight trials: Demonstration and performance analysis of the future aeronautical communications system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 615-634. DOI:10.1109/TAES.2021.3111722. [8] Franzen N, Arkhipov A, Schnell M. L-DACS1 physical layer laboratory demonstrator[C]// Proceedings of the2010 Integrated Communications,Navigation, and Surveillance Conference Proceedings. Herndon, VA, USA. IEEE, 2010: A2-1-A2-11. DOI:10.1109/ICNSURV.2010.5503324. [9] Bilzhause A, Belgacem B, Mostafa M, et al.Datalink security in the L-band digital aeronautical communications system (LDACS) for air traffic management[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(11): 22-33. DOI:10.1109/MAES.2017.160282. [10] Ayaz S, Hoffmann F, Epple U, et al.Performance evaluation of network mobility handover over future aeronautical data link[J]. Computer Communications, 2012, 35(3): 334-343. DOI:10.1016/j.comcom.2011.10.008. [11] Schnell M, Epple U, Shutin D, et al.LDACS: future aeronautical communications for air–traffic management[J]. IEEE Communications Magazine, 2014, 52(5): 104-110. DOI:10.1109/MCOM.2014.6815900. [12] Cheng B N, Block F J, Hamilton B R, et al.Design considerations for next-generation airborne tactical networks[J]. IEEE Communications Magazine, 2014, 52(5): 138-145. DOI:10.1109/MCOM.2014.6815904. [13] Chih-Lin I, Han S F, Xu Z K, et al.New paradigm of 5G wireless internet[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(3): 474-482. DOI:10.1109/JSAC.2016.2525739. [14] Wunder G, Kasparick M, ten Brink S, et al. 5GNOW: challenging the LTE design paradigms of orthogonality and synchronicity[C]//2013 IEEE 77th Vehicular Technology Conference (VTC Spring). Dresden, Germany. IEEE, 2013: 1-5. DOI: 10.1109/VTCSpring.2013.6691814. [15] Vakilian V, Wild T, Schaich F, et al.Universal-filtered multi-carrier technique for wireless systems beyond LTE[C]//2013 IEEE Globecom Workshops (GC Wkshps). Atlanta, GA, USA. IEEE, 2013: 223-228. DOI: 10.1109/GLOCOMW.2013.6824990. [16] Schaich F, Wild T.Waveform contenders for 5G—OFDM vs. FBMC vs. UFMC[C]//2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). Athens, Greece. IEEE, 2014: 457-460. DOI: 10.1109/ISCCSP.2014.6877912. [17] Chen Y J, Schaich F, Wild T.Multiple access and waveforms for 5G: IDMA and universal filtered multi-carrier[C]//2014 IEEE 79th Vehicular Technology Conference (VTC Spring). Seoul, Korea (South). IEEE, 2014: 1-5. DOI: 10.1109/VTCSpring.2014.7022995. [18] 龚旻, 任子毅, 马召, 等. 基于L频段数字航空通信系统1的F-OFDM波形设计[J].电讯技术, 2017, 57(6): 643-649. DOI: 10.3969/j.issn.1001–893x.2017.06.005. [19] Matolak D W, Jamal H, Hosseini N, et al.Novel filterbank multicarrier waveform for L-band digital aeronautical communications: Initial field test results[C]//2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). San Antonio, TX, USA. IEEE, 2021: 1-10. DOI: 10.1109/DASC52595.2021.9594295. [20] D'Andrea C, Buzzi S, Fresia M, et al. Doppler-resilient universal filtered MultiCarrier (DR-UFMC): A beyond-OTFS modulation[C]//2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). Gothenburg, Sweden. IEEE, 2023: 150-155. DOI: 10.1109/EuCNC/6GSummit58263.2023.10188322. [21] Sharma G K, Arya R K, Nigam V S.Performance analysis of UFMC for 5G technologies with different channel coding techniques[C]//2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT). Karaikal, India. IEEE, 2023: 1-6. DOI: 10.1109/IConSCEPT57958.2023.10170587. [22] Youssef M M, Ibrahim M, Abdelhamid B.Deep learning-aided channel estimation for universal filtered multi-carrier systems[C]//2023 40th National Radio Science Conference (NRSC). Giza, Egypt. IEEE, 2023: 159-166. DOI: 10.1109/NRSC58893.2023.10152951. [23] Kumar V, Mukherjee M, Lloret J.A hardware-efficient and reconfigurable UFMC transmitter architecture with its FPGA prototype[J]. IEEE Embedded Systems Letters, 2020, 12(4): 109-112. DOI:10.1109/LES.2019.2961850. [24] Kumar V, Mukherjee M, Lloret J.Reconfigurable architecture of UFMC transmitter for 5G and its FPGA prototype[J]. IEEE Systems Journal, 2020, 14(1): 28-38. DOI:10.1109/JSYST.2019.2923549. [25] Heil M M, Hammoodi A T, Rasool J M.A comparative analysis of Bohman Windowing Performance for UFMC with Higher QAM Modulation[C]//2023 Al-Sadiq International Conference on Communication and Information Technology (AICCIT). Al-Muthana, Iraq. IEEE, 2023: 13-17. DOI: 10.1109/AICCIT57614.2023.10217941. [26] Tuli E A, Kim D S, Lee J M.Performance enhancement of UFMC systems using Kaiser window filter[C]//2021 International Conference on Information and Communication Technology Convergence (ICTC). Jeju Island, Korea, Republic of. IEEE, 2021: 386-388. DOI: 10.1109/ICTC52510.2021.9620960. [27] Yarrabothu R S, Nelakuditi U R.Optimization of out-of-band emission using kaiser-bessel filter for UFMC in 5G cellular communications[J]. China Communications, 2019, 16(8): 15-23. DOI: 10.23919/JCC.2019.08.002. [28] Roy S, Chandra A.On the order minimization of interpolated bandpass method based narrow transition band FIR filter design[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(11): 4287-4295. DOI:10.1109/TCSI.2019.2928052. [29] Lu W S, Hinamoto T.A unified approach to the design of interpolated and frequency-response-masking FIR filters[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(12): 2257-2266. DOI:10.1109/TCSI.2016.2613880. [30] 郭振津, 高凯, 李泰立, 等. UFMC发射机的低复杂度实现方案设计[J]. 信息通信, 2019, 32(5): 88-90, 92. DOI: 10.3969/j.issn.1673-1131.2019.05.036. [31] Xu Y H, Lim M S.An efficient design of split-radix FFT pruning for OFDM based Cognitive Radio system[C]//2011 International SoC Design Conference. Jeju, Korea (South). IEEE, 2011: 368-372. DOI:10.1109/ISOCC.2011.6138787. [32] Wild T, Schaich F.A reduced complexity transmitter for UF-OFDM[C]//2015 IEEE 81st Vehicular Technology Conference (VTC Spring). Glasgow, UK. IEEE, 2015: 1-6. DOI:10.1109/VTCSpring.2015.7145643. |