[1] 刘青, 张莉莉, 李江涛, 等. “十四五” 期间中国电力需求增长趋势研判[J]. 中国电力, 2022, 55(1): 214-219. DOI: 10.11930/j.issn.1004-9649.202006284.
[2] 马永刚. 高压输电线路巡检与故障诊断技术研究及其应用[J]. 现代工业经济和信息化, 2023, 13(12): 140-142,149. DOI: 10.16525/j.cnki.14-1362/n.2023.12.044.
[3] 吕志宁. 输电线路常见故障分析与检测方法综述[J]. 自动化与仪器仪表, 2020(1): 161-164, 168. DOI: 10.14016/j.cnki.1001-9227.2020.01.161.
[4] 李立理, 张义斌. 国际大停电事故分析及其对我国电力安全生产的启示[J]. 中国电力企业管理, 2014(8): 16-18. DOI: 10.3969/j.issn.1007-3361.2014.08.003.
[5] 刘泽洪. 复合绝缘子使用现状及其在特高压输电线路中的应用前景[J]. 电网技术, 2006, 30(12): 1-7.DOI: 10.3321/j.issn:1000-3673.2006.12.001.
[6] 黄山, 吴振升, 任志刚, 等. 电力智能巡检机器人研究综述[J]. 电测与仪表, 2020, 57(2): 26-38. DOI: 10.19753/j.issn1001-1390.2020.002.005.
[7] 刘思言, 王博, 高昆仑, 等. 基于R-FCN的航拍巡检图像目标检测方法[J]. 电力系统自动化, 2019, 43
(13): 162-168. DOI: 10.7500/AEPS20180921005.
[8] 赵振兵, 齐鸿雨, 聂礼强. 基于深度学习的输电线路视觉检测研究综述[J]. 广东电力, 2019, 32(9): 11-
DOI:10.OI:10.3969/j.issn.1007-290X.2019.009.002.
[9] Yuan Z W, Tang C, Yang A X, et al.Few-shot remote sensing image scene classification based on metric learning and local descriptors[J]. Remote Sensing, 2023, 15(3): 831. DOI: 10.3390/rs15030831.
[10] 赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2): 349-369. DOI: 10.13328/j.cnki.jos.006138.
[11] 刘鑫, 周凯锐, 何玉琳, 等. 基于度量的小样本分类方法研究综述[J]. 模式识别与人工智能, 2021, 34
(10): 909-923. DOI: 10.16451/j.cnki.issn1003-6059.202110004.
[12] 安胜彪, 郭昱岐, 白宇, 等. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511-532.
DOI: 10.3778/j.issn.1673-9418.2210035.
[13] Chen Y B, Liu Z, Xu H J, et al.Meta-baseline: Exploring simple meta-learning for few-shot learning[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 9042-9051. DOI: 10.1109/ICCV48922.2021.00893.
[14] He K M, Zhang X Y, Ren S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[15] Lee K, Maji S, Ravichandran A, et al.Meta-learning with differentiable convex optimization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 10649-10657. DOI: 10.1109/CVPR.2019.01091.
[16] 史燕燕, 史殿习, 乔子腾, 等. 小样本目标检测研究综述[J]. 计算机学报, 2023, 46(8): 1753-1780. DOI: 10.11897/SP.J.1016.2023.01753.
[17] Ioffe S, Szegedy C.Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. 32nd International Conference on Machine Learning, ICML 2015,2015,1:448-456.DOI:10.48550/arXiv.1502.03167.
[18] Maas A L. Rectifier nonlinearities improve neural network acoustic models[C/OL]. (2013)[2024-07-12]. https://api.semanticscholar.org/CorpusID:16489696.
[19] Snell J, Swersky K, Zemel R S. Prototypical networks for few-shot learning[EB/OL]. (2017-03-15)[2024-07-12]. https://arxiv.org/abs/1703.05175v2.
[20] Dhillon G S, Chaudhari P, Ravichandran A, et al. A baseline for few-shot image classification[EB/OL]. (2019-09-06)[2024-07-12]. https://arxiv.org/abs/1909.02729v5.
[21] Triantafillou E, Zhu T L, Dumoulin V, et al. Meta-dataset: a dataset of datasets for learning to learn from few examples[EB/OL]. (2019-03-07)[2024-07-12].https://api.semanticscholar.org/CorpusID:71145737.
[22] Rusu A A, Rao D, Sygnowski J, et al. Meta-learning with latent embedding optimization[EB/OL]. (2018-07-16)[2024-07-12]. http://arxiv.org/abs/1807.05960v3.
[23] Vinyals O, Blundell C, Lillicrap T, et al.Matching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016: 3637-3645. DOI: 10.48550/arXiv.1606.04080.
[24] Sung F, Yang Y X, Zhang L, et al.Learning to compare: relation network for few-shot learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 1199-1208. DOI: 10.1109/CVPR.2018.00131.
[25] Hou R, Chang H, Ma B, et al.Cross attention network for few-shot classification[J]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019, 360: 4003-4014. DOI: 10.48550/arXiv.1910.07677.
[26] Yosinski J, Clune J, Bengio Y, et al.How transferable are features in deep neural networks?[J]. Advances in Neural Information Processing Systems, 2014, 4(January): 3320-3328.DOI: 10.48550/arXiv.1411.1792.
[27] Saikia T, Brox T, Schmid C. Optimized generic feature learning for few-shot classification across domains[EB/OL].(2020-01-22)[2024-07-12]. https://arxiv.org/abs/2001.07926v1.
[28] Antoniou A, Edwards H, Storkey A. How to train your MAML[C/OL]. United States: International conference on learning representations, (2018-12-21)[2024-07-12]. https://openreview.net/forum?id=HJGven05Y7.
[29] Ravi S, Larochelle H. Optimization as a model for few-shot learning[C/OL]. International conference on learning representations, (2016-11-04)[2024-07-12]. https://api.semanticscholar.org/CorpusID:67413369.
[30] Triantafillou E, Larochelle H, Zemel R, et al. Learning a universal template for few-shot dataset generalization[EB/OL].(2021-06-21)[2024-07-12]. https://arxiv.org/abs/2105.07029v2. |