[1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77--91. DOI:10.2307/2975974. [2] Merton R C. Optimum consumption and portfolio rules in a continuous-time model2 ]Merton R C. Optimum consumption and portfolio rules in a continuous-time model[J]. Journal of Economic Theory, 1971, 3(4):373-413. DOI: 10.1016/0022-0531(71)90038-X. [3] Merton R C. Lifetime portfolio selection under uncertainty: the continuous-time case3 ]Merton R C. Lifetime portfolio selection under uncertainty: the continuous-time case[J]. The Review of Economics and Statistics, 1969, 51(3): 247-257. DOI: 10.2307/1926560. [4] Kim T S, Omberg E. Dynamic nonmyopic portfolio behavior[J]. The Review of Financial Studies, 1996, 9(1): 141-161. DOI: 10.1093/rfs/9.1.141. [5] Liu J. Portfolio selection in stochastic environments5 ]Liu J. Portfolio selection in stochastic environments[J]. The Review of Financial Studies, 2007, 20(1): 1-39. DOI: 10.1093/rfs/hhl001. [6] Li D, Ng W L. Optimal dynamic portfolio selection: multiperiod mean-variance formulation6 ]Li D, Ng W L. Optimal dynamic portfolio selection: multiperiod mean-variance formulation[J]. Mathematical Finance, 2000, 10(3): 387-406. DOI: 10.1111/1467-9965.00100. [7] Zhou X Y, Li D. Continuous-time mean-variance portfolio selection: a stochastic LQ framework7 ]Zhou X Y, Li D. Continuous-time mean-variance portfolio selection: a stochastic LQ framework[J]. Applied Mathematics & Optimization, 2000, 42: 19-33. DOI: 10.1007/s002450010003. [8] Strotz R H. Myopia and inconsistency in dynamic utility maximization8 ]Strotz R H. Myopia and inconsistency in dynamic utility maximization[J]. The Review of Economic Studies, 1955, 23(3): 165-180. DOI:10.2307/2295722. [9] Basak S, Chabakauri G. Dynamic mean-variance asset allocationChabakauri G. Dynamic mean-variance asslocation[J]. The Review of Financial Studies, 2010, 23(8): 2970-3016. DOI: 10.1093/rfs/hhq028. [10] Björk T, Murgoci A. A theory of Markovian time-inconsistent stochastic control in discrete time[J]. Finance and Stochastics, 2014, 18: 545-592. DOI: 10.1007/s00780-014-0234-y. [11] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4):987-1007. DOI: 10.2307/1912773. [12 ]Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327. DOI:10.1016/0304-4076(86)90063-1. [13] Heston S L, Nandi S. A closed-form GARCH option valuation model[J]. The Review of Financial Studies, 2000, 13(3): 585-625. DOI: 10.1093/rfs/13.3.585. [14] Christoffersen P, Heston S, Jacobs K. Option valuation with conditional skewness[J]. Journal of Econometrics, 2006, 131(1-2): 253-284. DOI: 10.1016/j.jeconom.2005.01.010. [15] Badescu A, Cui Z Y, Ortega J P. Closed-form variance swap prices under general affine GARCH models and their continuous-time limits[J]. Annals of Operations Research, 2019, 282: 27-57. DOI: 10.1007/s10479-018-2941-9. [16] Escobar-Anel M, Rastegari J, Stentoft L. Affine multivariate GARCH models[J]. Journal of Banking & Finance, 2020, 118: 105895. DOI: 10.1016/j.jbankfin.2020.105895. [17] Escobar-Anel M, Gollart M, Zagst R. Closed-form portfolio optimization under GARCH models[J]. Operations Research Perspectives, 2022, 9: 100216. DOI: 10.1016/j.orp.2021.100216. [18] Escobar-Anel M, Spies B, Zagst R. Mean-variance optimization under affine GARCH: a utility-based solution[J]. Finance Research Letters, 2024, 59: 104749. DOI: 10.1016/j.frl.2023.104749. [19] Birge J R, Chavez-Bedoya L. Portfolio optimization under a generalized hyperbolic skewed t distribution and exponential utility[J]. Quantitative Finance, 2016, 16(7): 1019-1036. DOI: 10.1080/14697688.2015.1113307. [20] Campbell J Y, Viceira L M. Consumption and portfolio decisions when expected returns are time varying20 ]Campbell J Y, Viceira L M. Consumption and portfolio decisions when expected returns are time varying[J]. The Quarterly Journal of Economics, 1999, 114(2): 433-495. DOI: 10.1162/003355399556043. |