[1] 牟晓明, 于应文, 王先之, 等. 青藏高原火绒草斑块群落空间格局分析[J]. 生态学报, 2015, 35(16): 5306-5315. DOI: 10.5846/stxb201404190770.
[2] Klausmeier C A.Regular and irregular patterns in semiarid vegetation[J]. Science, 1999, 284(5421): 1826-1828. DOI: 10.1126/science.284.5421.1826.
[3] Aguiar M R, Sala O E.Patch structure, dynamics and implications for the functioning of arid ecosystems[J]. Trends in Ecology & Evolution, 1999, 14(7): 273-277. DOI: 10.1016/S0169-5347(99)01612-2.
[4] Derner J D, Briske D D, Polley H W.Tiller organization within the tussock grass Schizachyrium scoparium: A field assessment of competition-cooperation tradeoffs[J]. Botany, 2012, 90(8): 669-677. DOI: 10.1139/b2012-025.
[5] Rietkerk M, Boerlijst M C, van Langevelde F, et al. Self-organization of vegetation in arid ecosystems[J]. The American Naturalist, 2002, 160(4): 524-530. DOI: 10.1086/342078.
[6] van de Koppel J, Crain C M. Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh[J]. The American Naturalist, 2006, 168(5): E136-E147. DOI: 10.1086/508671.
[7] Rietkerk M, van de Koppel J. Regular pattern formation in real ecosystems[J]. Trends in Ecology & Evolution, 2008, 23(3): 169-175. DOI: 10.1016/j.tree.2007.10.013.
[8] Bronstein J L.The evolution of facilitation and mutualism[J]. Journal of Ecology, 2009, 97(6): 1160-1170. DOI: 10.1111/j.1365-2745.2009.01566.x.
[9] Bertness M D, Callaway R.Positive interactions in communities[J]. Trends in Ecology & Evolution, 1994, 9(5): 191-193. DOI: 10.1016/0169-5347(94)90088-4.
[10] He Q, Bertness M D, Altieri A H.Global shifts towards positive species interactions with increasing environmental stress[J]. Ecology Letters, 2013, 16(5): 695-706. DOI: 10.1111/ele.12080.
[11] iPlant植物智——植物物种信息系统. 矮火绒草Leontopodium nanum[DB/OL].[2025-05-09]. https://www.iplant.cn/info/矮火绒草.
[12] 许雪贇, 秦燕燕, 曹建军, 等. 青藏高原火绒草叶片生态化学计量特征随海拔的变化[J]. 应用生态学报, 2018, 29(12): 3934-3940. DOI: 10.13287/j.1001-9332.201812.021.
[13] Wiesmair M, Otte A, Waldhardt R.Relationships between plant diversity, vegetation cover, and site conditions: Implications for grassland conservation in the Greater Caucasus[J]. Biodiversity and Conservation, 2017, 26(2): 273-291. DOI: 10.1007/s10531-016-1240-5.
[14] Luo J F, Liu X M, Yang J, et al.Variation in plant functional groups indicates land degradation on the Tibetan Plateau[J]. Scientific Reports, 2018, 8: 17606. DOI: 10.1038/s41598-018-36028-5.
[15] Wang Y, Heberling G, Görzen E, et al.Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet[J]. Applied Vegetation Science, 2017, 20(3): 327-339. DOI: 10.1111/avsc.12312.
[16] 陈宁, 张扬建, 朱军涛, 等. 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究[J]. 植物生态学报, 2018, 42(1): 50-65. DOI: 10.17521/cjpe.2017.0252
[17] Hao X H, Yang J J, Dong S K, et al.Impacts of short-term grazing intensity on the plant diversity and ecosystem function of alpine steppe on the Qinghai-Tibetan Plateau[J]. Plants, 2022, 11(14): 1889. DOI: 10.3390/plants11141889.
[18] 郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报, 2020, 40(3): 964-975. DOI: 10.5846/stxb201809162019.
[19] 李林栖, 马玉寿, 李世雄, 等. 返青期休牧对祁连山区中度退化草原化草甸草地的影响[J]. 草业科学, 2017, 34(10): 2016-2023. DOI: 10.11829/j.issn.1001-0629.2017-0200.
[20] 段敏杰, 高清竹, 万运帆, 等. 放牧对藏北紫花针茅高寒草原植物群落特征的影响[J]. 生态学报, 2010, 30(14): 3892-3900. DOI: 10.20103/j.stxb.2010.14.027.
[21] 吴建波, 王小丹. 围封年限对藏北退化高寒草原植物群落特征和生物量的影响[J]. 草地学报, 2017, 25(2): 261-266. DOI: 10.11733/j.issn.1007-0435. 2017.02.006
[22] Xu X M, Wei Z, Sun J Z, et al.Phylogeny of Leontopodium (Asteraceae) in China-with a reference to plastid genome and nuclear ribosomal DNA[J]. Frontiers in Plant Science, 2023, 14: 1163065. DOI: 10.3389/fpls.2023.1163065.
[23] 何涛, 吴学明, 王学仁, 等. 不同海拔火绒草光合特性的研究[J]. 西北植物学报, 2005, 25(12): 2519-2523. DOI: 10.3321/j.issn:1000-4025.2005.12.026.
[24] 郑梦娜, 贾傲, 陈之光, 等. 青藏高原矮火绒草(Leontopodium nanum)叶片性状对海拔高度变化的响应[J]. 生态学报, 2022, 42(24): 10305-10316. DOI: 10.5846/stxb202111143191.
[25] Wang H R, Su H H, Biswas A, et al.Leaf stoichiometry of Leontopodium lentopodioides at high altitudes on the northeastern Qinghai-Tibetan Plateau, China[J]. Journal of Arid Land, 2022, 14(10): 1124-1137. DOI: 10.1007/s40333-022-0033-9.
[26] 张娅娅, 刘旻霞, 李博文, 等. 不同海拔矮嵩草与火绒草种群分布格局及空间关联性[J]. 生态学杂志, 2020, 39(2): 404-411. DOI: 10.13292/j.1000-4890.202002.013.
[27] Yu H, Kong B, Wang G X, et al.Hyperspectral database prediction of ecological characteristics for grass species of alpine grasslands[J]. The Rangeland Journal, 2018, 40(1): 19-29. DOI: 10.1071/rj17084.
[28] 孔倩, 牛海山. 高寒草原矮火绒草和紫花针茅微斑块对Rb+的吸收距离[J]. 中国科学院大学学报, 2022, 39(2): 185-92. DOI:10.7523/j.ucas.2020.0039.
[29] 张新时. 中华人民共和国植被图(1:1 000 000)[CM]. 北京: 地质出版社, 2007. DOI: 0.12282/plantdata.0155, CSTR: 4735.11. PLANTDATA.0155
[30] 郑度等. 中国生态地理区划[CM]. 中国地理图集: 北京: 中国地图出版社, 1999. (2020-01-17)[2025-05-09]. https://www.osgeo.cn/map/m014b.
[31] 李润富, 牛海山, 孔倩, 等. 自然丰度法与同位素稀释法测定植物固氮能力的比较[J]. 中国科学院大学学报, 2022, 39(1): 34-42. DOI: 10.7523/j.ucas.2021.0008.
[32] Kéfi S, Rietkerk M, Alados C L, et al.Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems[J]. Nature, 2007, 449(7159): 213-217. DOI: 10.1038/nature06111.
[33] Maestre F T, Escudero A.Is the patch size distribution of vegetation a suitable indicator of desertification processes?[J]. Ecology, 2009, 90(7): 1729-1735. DOI: 10.1890/08-2096.1
[34] Warton D I, Duursma R A, Falster D S, et al.SMATR 3-an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3(2): 257-259. DOI: 10.1111/j.2041-210X.2011.00153.x.
[35] Warton D I, Wright I J, Falster D S, et al.Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006, 81(2): 259-291. DOI: 10.1017/S1464793106007007.
[36] Gurevitch J, Scheiner S M, Fox G A.The ecology of plants[M]. 3 ed. New York: Oxford University Press, 2021.
[37] 吴月茹, 王维真, 王海兵, 等. 采用新电导率指标分析土壤盐分变化规律[J]. 土壤学报, 2011, 48(4): 869-873. DOI: 10.11766/trxb201002030051.
[38] 孙娟娟, 张英俊. 植物对盐分空间不均匀分布的形态和生理响应研究进展[J]. 生态学报, 2017, 37(23): 7791-7798. DOI: 10.5846/stxb201703200472.
[39] Perelman A, Jorda H, Vanderborght J, et al.Tracing root-felt sodium concentrations under different transpiration rates and salinity levels[J]. Plant and Soil, 2020, 447(1): 55-71. DOI: 10.1007/s11104-019-03959-5.
[40] Vetterlein D, Kuhn K, Schubert S, et al.Consequences of sodium exclusion for the osmotic potential in the rhizosphere-Comparison of two maize cultivars differing in Na+ uptake[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(3): 337-344. DOI: 10.1002/jpln.200420407.
[41] Sinha B K, Singh N T.Salt distribution around roots of wheat under different transpiration rates[J]. Plant and Soil, 1976, 44(1): 141-147. DOI: 10.1007/BF00016962.
[42] Hong J T, Wang X D, Wu J B.Effects of soil fertility on the N: P stoichiometry of herbaceous plants on a nutrient-limited alpine steppe on the northern Tibetan Plateau[J]. Plant and Soil, 2015, 391(1): 179-194. DOI: 10.1007/s11104-015-2416-6.
[43] Grassein F, Lemauviel-Lavenant S, Lavorel S, et al.Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species[J]. Annals of Botany, 2015, 115(1): 107-115. DOI: 10.1093/aob/mcu233.
[44] Li W, Liu Y Z, Wang J L, et al.Six years of grazing exclusion is the optimum duration in the alpine meadow-steppe of the north-eastern Qinghai-Tibetan Plateau[J]. Scientific Reports, 2018, 8(1): 17269. DOI: 10.1038/s41598-018-35273-y.
[45] Miranda-Apodaca J, Mena-Petite A, Lacuesta M, et al.A physiological approach to study the competition ability of the grassland species Trifolium pratense and Agrostis capillaris[J]. Journal of Plant Physiology, 2020, 254: 153284. DOI: 10.1016/j.jplph.2020.153284.
[46] Craft C.3. Ecological theory and restoration[M]// Craft C. Creating and Restoring Wetlands: From Theory to Practice (Second Edition). Elsevier, 2022: 57-91. DOI: 10.1016/B978-0-12-407232-9.00003-8.
[47] 仁青吉, 武高林, 任国华. 放牧强度对青藏高原东部高寒草甸植物群落特征的影响[J]. 草业学报, 2009, 18(5): 256-261. DOI: 10.11686/cyxb20090533.
[48] Pulungan M A, Suzuki S, Gavina M K A, et al. Grazing enhances species diversity in grassland communities[J]. Scientific Reports, 2019, 9(1): 11201. DOI: 10.1038/s41598-019-47635-1.
[49] Wang C, Tang Y J.A global meta-analyses of the response of multi-taxa diversity to grazing intensity in grasslands[J]. Environmental Research Letters, 2019, 14(11): 114003. DOI: 10.1088/1748-9326/ab4932.
[50] 郑伟, 董全民, 李世雄, 等. 放牧强度对环青海湖高寒草原群落物种多样性和生产力的影响[J]. 草地学报, 2012, 20(6): 1033-1038. DOI: 10.11733/j.issn.1007-0435.2012.06.008.
[51] Scotton M.Mountain grassland restoration: Effects of sowing rate, climate and soil on plant density and cover[J]. Science of The Total Environment, 2019, 651: 3090-3098. DOI: 10.1016/j.scitotenv.2018.10.192.
[52] 张骞, 马丽, 张中华, 等. 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望[J]. 生态学报, 2019, 39(20): 7441-7451. DOI: 10.5846/stxb201908301803.
[53] 潘庆民, 杨元合, 黄建辉. 我国退化草原恢复的限制因子及需要解决的基础科学问题[J]. 中国科学基金, 2023, 37(4): 571-579. DOI: 10.16262/j.cnki.1000-8217.2023.04.002.
[54] 贺金生, 卜海燕, 胡小文, 等. 退化高寒草地的近自然恢复: 理论基础与技术途径[J]. 科学通报, 2020, 65(34):3898-3908. DOI: 10.1360/TB-2020-0405.
[55] Jia Y L, Chen S Y, Wu M H, et al.Improved permafrost stability by revegetation in extremely degraded grassland of the Qinghai-Tibetan Plateau[J]. Geoderma, 2023, 430: 116350. DOI: 10.1016/j.geoderma. 2023.116350.
[56] Wu G L, Li M T, Leite P A M, et al. Restoration approach for alpine extremely degraded landscapes: Testing direct seeding and mulching with grass clippings[J]. Restoration Ecology, 2024, 32(3):e14074. DOI: 10.1111/rec.14074.
[57] 张英俊, 周冀琼, 杨高文, 等. 退化草原植被免耕补播修复理论与实践[J]. 科学通报, 2020, 65(16):1546-1555. DOI: 10.1360/TB-2020-0224.
[58] 马东峰, 贾存智, 王学朋, 等. 甘南高寒退化草甸多物种组配的修复效果评估[J]. 植物生态学报, 2025, 49(1):93-102. DOI: 10.17521/cjpe.2024.0102.
[59] Vloon C C, Evju M, Klanderud K, et al.Alpine restoration: Planting and seeding of native species facilitate vegetation recovery[J]. Restoration Ecology, 2022, 30(1):e13479. DOI: 10.1111/rec.13479. |