欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

基于数值模拟与多层感知机的地下水污染源特征识别*

何俊鹏, 王明玉   

  1. 中国科学院大学资源与环境学院,北京 101408
  • 收稿日期:2025-03-20 修回日期:2025-05-20
  • 通讯作者: E-mail: mwang@ucas.ac.cn
  • 基金资助:
    *国家重点研发计划项目(2020YFC1807102)和国家自然科学基金(42477092)资助

Groundwater pollution source feature identification based on numerical simulation and multi-layer perceptron

HE Junpeng, WANG Mingyu   

  1. College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 101408,China
  • Received:2025-03-20 Revised:2025-05-20

摘要: 本文针对地下水污染源溯源研究中传统方法存在的反演不确定性、计算效率低及适用性受限等问题,提出了一种基于深度学习的污染源识别新方法。研究基于所构建的水文地质概念模型,结合地下水数值模拟技术,建立不同污染源分布及场地参数驱动下的地下水污染物迁移转化多情景数值模型,进而获得机器学习数据集,将传统反演问题转化为深度学习正演求解过程。采用正交试验设计方法生成覆盖参数空间的输入数据集,耦合地下水数值模拟与贝叶斯超参数优化的多层感知机(MLP)模型,构建了具有适用不同条件的通用性地下水污染溯源深度学习模型。针对仅有单井地下水污染监测数据不利条件,所建立的MLP模型平均确定性系数达0.79,总体平均相对误差控制在25.12%,各输出特征识别精度均超过70%。研究成果有望为单一监测点但复杂的地下水系统污染源识别提供了通用诊断模型与新的有效技术路径。

关键词: 地下水污染, 污染羽溯源, 数值模拟, 多层感知机, 深度学习

Abstract: This study addresses the limitations of conventional methods in groundwater contamination source identification, including inversion uncertainty, low computational efficiency, and restricted applicability. We propose a novel deep learning-based approach for pollution source recognition. A hydrogeological conceptual model was established, integrated with multiphase flow numerical simulations to develop contaminant transport models. This framework transforms traditional inversion challenges into deep learning forward-solving processes. Through orthogonal experimental design, we generated comprehensive input datasets spanning parameter spaces. A multilayer perceptron (MLP) model was constructed by coupling multiphase flow simulations with Bayesian hyperparameter optimization, forming an adaptive deep learning framework for groundwater pollution tracing. The developed MLP model achieves an average coefficient of determination (R²) of 0.79, with overall mean relative error controlled at 25.12%. All output features demonstrate recognition accuracy exceeding 70%.This research establishes a new technical pathway for contaminant source identification in complex groundwater systems, which can be quickly applied to different contaminated site conditions.

Key words: groundwater contamination, contamination plume source identification, numerical simulations, multilayer perceptron (MLP), deep learning

中图分类号: