[1] 王文兴, 童莉, 海热提. 土壤污染物来源及前沿问题[J]. 生态环境, 2005, 14(1): 1-5. DOI: 10.16258/j.cnki.1674-5906.2005.01.001. [2] 顾文龙, 卢文喜, 张宇, 等. 基于贝叶斯推理与改进的MCMC方法反演地下水污染源释放历史[J]. 水利学报, 2016, 47(6): 772-779. DOI: 10.13243/j.cnki.slxb.20150290. [3] Ayvaz M T.A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems[J]. Journal of Hydrology, 2016, 538: 161-176. DOI: 10.1016/j.jhydrol.2016.04.008. [4] Jha M, Datta B.Application of dedicated monitoring-network design for unknown pollutant-source identification based on dynamic time warping[J]. Journal of Water Resources Planning and Management, 2015, 141(11): 04015022. DOI: 10.1061/(asce)wr.1943-5452.0000513. [5] Chakraborty A, Prakash O.Identification of clandestine groundwater pollution sources using heuristics optimization algorithms: A comparison between simulated annealing and particle swarm optimization[J]. Environmental Monitoring and Assessment, 2020, 192(12): 791. DOI: 10.1007/s10661-020-08691-7. [6] Koupaei J A, Hosseini S M M, Maalek Ghaini F M. A new optimization algorithm based on chaotic maps and golden section search method[J]. Engineering Applications of Artificial Intelligence, 2016, 50: 201-214. DOI: 10.1016/j.engappai.2016.01.034. [7] 高琬玉, 卢文喜, 潘紫东, 等. 基于自适应权重粒子群优化算法的地下水污染溯源辨识[J]. 中国农村水利水电, 2022(12): 1-7, 16. DOI: 10.12396/znsd.220388. [8] 顾文龙, 卢文喜, 张宇, 等. 基于贝叶斯推理与改进的MCMC方法反演地下水污染源释放历史[J]. 水利学报, 2016, 47(6): 772-779. DOI: 10.13243/j.cnki.slxb.20150290. [9] 潘紫东, 卢文喜, 范越, 等. 基于模拟-优化方法的地下水污染源溯源辨识[J]. 中国环境科学, 2020, 40(4): 1698-1705. DOI: 10.19674/j.cnki.issn1000-6923.2020.0189. [10] 江思珉, 张亚力, 蔡奕, 等. 单纯形模拟退火算法反演地下水污染源强度[J]. 同济大学学报(自然科学版), 2013, 41(2): 253-257. DOI: 10.3969/j.issn.0253-374x.2013.02.017. [11] 任加国, 龚克, 马福俊, 等. 基于BP神经网络的污染场地土壤重金属和PAHs含量预测[J]. 环境科学研究, 2021, 34(9): 2237-2247. DOI: 10.13198/j.issn.1001-6929.2021.04.22. [12] Liu G, Zhou X, Li Q, et al.Spatial distribution prediction of soil as in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data[J]. Environmental Pollution, 2020, 267: 115631. DOI: 10.1016/j.envpol.2020.115631. [13] Vesselinov V V, Alexandrov B S, O'Malley D. Nonnegative tensor factorization for contaminant source identification[J]. Journal of Contaminant Hydrology, 2019, 220: 66-97. DOI: 10.1016/j.jconhyd.2018.11.010. [14] Chaubey J, Srivastava R.Simultaneous identification of groundwater pollution source location and release concentration using Artificial Neural Network[J]. Environmental Forensics, 2022, 23(3/4): 293-300. DOI: 10.1080/15275922.2020.1850566. [15] Xia X M, Jiang S M, Zhou N Q, et al.Groundwater contamination source identification and high-dimensional parameter inversion using residual dense convolutional neural network[J]. Journal of Hydrology, 2023, 617: 129013. DOI: 10.1016/j.jhydrol.2022.129013. [16] Pang M, Du E H, Zheng C M. Contaminant transport modeling and source attribution with attention-based graph neural network[J]. Water Resources Research, 2024, 60(6): e2023WR035278. DOI: 10.1029/2023WR035278. [17] Li X, Liang G H, He B, et al.Recent advances in groundwater pollution research using machine learning from 2000 to 2023: A bibliometric analysis[J]. Environmental Research, 2025, 267: 120683. DOI: 10.1016/j.envres.2024.120683. [18] 张涵, 郭珊珊, 胡远思. 区域地下水污染溯源与迁移转化[M]. 成都:西南交通大学出版社,2023. [19] 王景瑞, 胡立堂. 地下水污染源识别的数学方法研究进展[J]. 水科学进展, 2017, 28(6): 943-952. DOI: 10.14042/j.cnki.32.1309.2017.06.015. [20] Bakker M, Post V, Langevin C D, et al.Scripting MODFLOW model development using Python and FloPy[J]. Groundwater, 2016, 54(5): 733-739. DOI: 10.1111/gwat.12413. [21] 魏亚强, 陈坚, 张铎, 等. 基于Python的地下水模拟研究进展与应用[J]. 计算机技术与发展, 2021, 31(5): 150-156. DOI: 10.3969/j.issn.1673-629X.2021.05.026. [22] Goodfellow I, Bengio Y, Courville A.Deep learning[M]. Cambridge, MA: MIT Press, 2016:271-279. [23] Hutter F, Hoos H H, Leyton-Brown K.Sequential model-based optimization for general algorithm configuration[C]// Learning and Intelligent Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 507-523. DOI: 10.1007/978-3-642-25566-3_40. [24] Rosenblatt F.The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408. DOI: 10.1037/h0042519. [25] 胡亮, 肖俊, 王颖. 基于多维度特征和MLP的岩体点云植被滤波方法[J]. 中国科学院大学学报, 2020, 37(3): 345-351. DOI: 10.7523/j.issn.2095-6134.2020.03.007. [26] 张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 385-397, 410. DOI: 10.13976/j.cnki.xk.2018.8091. [27] Rumelhart D E, Hinton G E, Williams R J.Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. DOI: 10.1038/323533a0. [28] 王碧莲,王明玉,庞云天. 典型潜水层苯系物污染羽稳定性主控因子及统计建模[J]. 地球科学,2023,48(9):3454-3465. DOI:10.3799/dqkx.2021.135. [29] Vapnik V N .The Nature of Statistical Learning Theory[J].Springer, 1995.DOI:10.1007/978-1-4757-2440-0. [30] Samandi V, Mukhopadhyay D.Workflow scheduling in cloud computing environment with classification ordinal optimisation using SVM[J]. International Journal of Computational Science and Engineering, 2021, 24(6): 563. DOI: 10.1504/ijcse.2021.119970. [31] Chen W G, Gu Z L, Zou J X, et al.Analysis of furfural dissolved in transformer oil based on confocal laser Raman spectroscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 915-921. DOI: 10.1109/TDEI.2015.005434. |