欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    

生态系统状态转变及数学方法研究进展*

郝彦宾1,2, 巫明资2, 温富齐2, 王欣3, 赵彤3, 刘捷4, 王艳芬1,5†   

  1. 1 中国科学院大学北京燕山地球关键带国家野外科学观测研究站,北京 101408;
    2 中国科学院大学生命科学学院 北京 101408;
    3 中国科学院大学数学科学学院, 北京 101408;
    4 中国科学院大学工程科学学院 北京 101408;
    5 中国科学院大学资源与环境学院,北京 101408
  • 收稿日期:2025-05-26 修回日期:2025-07-03
  • 通讯作者: E-mail: yfwang@ucas.ac.cn
  • 基金资助:
    *国家自然科学基金(42041005)资助

Advances in Ecosystem Regime Shifts and Tipping Mechanisms: A Comprehensive Review

HAO Yanbin1,2, WU Mingzi2, WEN Fuqi2, WANG Xin3, ZHAO Tong3, LIU Jie4, WANG Yanfen1,5   

  1. 1 Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China;
    2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China;
    3 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China;
    4 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China;
    5 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-05-26 Revised:2025-07-03

摘要: 生态系统状态转变及其临界机制是生态学研究的核心议题,对预测全球变化下的生态风险至关重要。本文系统梳理了生态系统多稳态理论(ASS)的发展脉络,从微观-宏观过程耦合、阈值响应机制及调控节点对系统恢复力的影响三个维度,整合了多稳态理论、势能景观模型和分岔分析等方法学进展。研究表明,气候变暖与人类活动正推动全球关键生态系统(如珊瑚礁、亚马逊雨林、北极冻土)逼近临界点,而滞后效应和不可逆势加剧了恢复难度。网络模型与能量流动理论的结合为跨尺度预警提供了新思路,但微观机制与宏观格局的整合仍是未来研究的挑战。本文旨在为生态阈值管理提供理论框架,并强调亟须发展多学科交叉方法以应对行星尺度生态相变风险。

关键词: 生态系统状态转变, 临界点, 多稳态, 滞后效应, 食物网

Abstract: Regime shifts and their critical mechanisms in ecosystems are the critical issue in ecological research, with profound implications for predicting ecological risks under global change. This review systematically synthesizes the theoretical advances in alternative stable state (ASS) of ecosystem multi-stability, focusing on three key dimensions: (1) micro-macro process coupling, (2) mechanisms of threshold response, and (3) the role of regulatory nodes in ecosystem resilience. By integrating methodologies such as ASS theory, potential landscape modeling, and bifurcation analysis, we highlight how climate change and anthropogenic activities are driving critical ecosystems (e.g., coral reefs, Amazon rainforest, Arctic permafrost) toward tipping points, while hysteresis effects and irreversible potentials exacerbate recovery challenges. Emerging approaches combining network theory and energy (carbon) flux analysis offer novel insights for cross-scale early warning, yet bridging micro-scale mechanisms with macro-scale patterns remains a critical challenge. This review provides a theoretical framework for ecological threshold management and underscores the urgent need for interdisciplinary approaches to address planetary-scale regime shift risks.

Key words: Ecosystem regime shifts, tipping point, Stability, Hysteresis effects, Food webs

中图分类号: