[1] Armstrong McKay D I, Staal A, Abrams J F, et al. Exceeding 1.5°C global warming could trigger multiple climate tipping points[J]. Science, 2022, 377(6611): eabn7950. DOI:10.1126/science.abn7950. [2] Calvin K, Dasgupta D, Krinner G, et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.[R]. First. Intergovernmental Panel on Climate Change (IPCC), 2023[2024-11-14]. https://www.ipcc.ch/report/ar6/syr/. DOI:10.59327/IPCC/AR6-9789291691647. [3] Lenton T M, Rockström J, Gaffney O, et al.Climate tipping points — too risky to bet against[J]. Nature, 2019, 575(7784): 592-595. DOI:10.1038/d41586-019-03595-0. [4] Pithan F, Mauritsen T.Arctic amplification dominated by temperature feedbacks in contemporary climate models[J]. Nature Geoscience, 2014, 7(3): 181-184. DOI:10.1038/ngeo2071. [5] Liu T, Chen D, Yang L, et al.Teleconnections among tipping elements in the Earth system[J]. Nature Climate Change, 2023, 13(1): 67-74. DOI:10.1038/s41558-022-01558-4. [6] Springmann M, Clark M, Mason-D'Croz D, et al. Options for keeping the food system within environmental limits[J]. Nature, 2018, 562(7728): 519-525. DOI:10.1038/s41586-018-0594-0. [7] 吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法[J]. 生态学报, 2001(12): 2096-2105. [8] Brown J H, Gillooly J F, Allen A P, et al.TOWARD A METABOLIC THEORY OF ECOLOGY[J]. Ecology, 2004, 85(7): 1771-1789. DOI:10.1890/03-9000. [9] May R M.Thresholds and breakpoints in ecosystems with a multiplicity of stable states[J]. Nature, 1977, 269(5628): 471-477. DOI:10.1038/269471a0. [10] Thébault E, Fontaine C.Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks[J]. Science, 2010, 329(5993): 853-856. DOI:10.1126/science.1188321. [11] Bascompte J, Jordano P, Melián C J, et al.The nested assembly of plant-animal mutualistic networks[J]. Proceedings of the National Academy of Sciences, 2003, 100(16): 9383-9387. DOI:10.1073/pnas.1633576100. [12] Levin S A.Self-organization and the Emergence of Complexity in Ecological Systems[J]. BioScience, 2005, 55(12): 1075-1082. DOI:10.1641/0006-3568(2005)055[1075:SATEOC]2.0.CO;2. [13] 赵东升,张雪梅.生态系统多稳态研究进展. 生态学报,2021,41(16):6314~6328. DOI:10.5846/stxb202008212178. [14] 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系. 植物生态学报, 2021, 45(10): 1127-1139. DOI: 10.17521/cjpe.2020.0116 [15] 唐海萍, 陈姣, 薛海丽. 生态阈值:概念、方法与研究展望. 植物生态学报, 2015, 39(9): 932-940 DOI:10.17521/cjpe.2015.0090. [16] Dakos V, Carpenter S R, Van Nes E H, et al. Resilience indicators: prospects and limitations for early warnings of regime shifts[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1659): 20130263. DOI:10.1098/rstb.2013.0263. [17] Scheffer M, Carpenter S, Foley J A, et al.Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596. DOI:10.1038/35098000. [18] 吕一河, 陈利顶, 傅伯杰. 景观格局与生态过程的耦合途径分析[J]. 地理科学进展, 2007,26(3): 1-10. DOI: 10.11820/dlkxjz.2007.03.001 [19] Lewontin R C.The meaning of stability[J]. Brookhaven Symposia in Biology, 1969, 22: 13-24. [20] Hasler A D.Eutrophication of Lakes by Domestic Drainage[J]. Ecology, 1947, 28(4): 383-395. DOI:10.2307/1931228. [21] Holling C S.Resilience and Stability of Ecological Systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23. DOI:10.1146/annurev.es.04.110173.000245. [22] Carpenter S, Walker B, Anderies J M, et al.From Metaphor to Measurement: Resilience of What to What?[J]. Ecosystems, 2001, 4(8): 765-781. DOI:10.1007/s10021-001-0045-9. [23] Price M F.Panarchy: Understanding Transformations in Human and Natural Systems[J]. Biological Conservation, 2003, 114(2): 308-309. DOI:10.1016/S0006-3207(03)00041-7. [24] Allen C R, Garmestani A S.Adaptive Management of Social-Ecological Systems[M]. Dordrecht: Springer, 2015:55-80. DOI:10.1007/978-94-017-9682-8. [25] Scheffer M, Bolhuis J E, Borsboom D, et al.Quantifying resilience of humans and other animals[J]. Proceedings of the National Academy of Sciences, 2018, 115(47): 11883-11890. DOI:10.1073/pnas.1810630115. [26] Wang J, Xu L, Wang E.Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations[J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12271-12276. DOI:10.1073/pnas.0800579105. [27] Hasin Y, Seldin M, Lusis A.Multi-omics approaches to disease[J]. Genome Biology, 2017, 18(1): 83. DOI:10.1186/s13059-017-1215-1. [28] Pettorelli N, Schulte To Bühne H, Tulloch A, et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward[J]. Remote Sensing in Ecology and Conservation, 2018, 4(2): 71-93. DOI:10.1002/rse2.59. [29] Strogatz S H.Nonlinear Dynamics and Chaos[M]. 2nd ed. Boca Raton: CRC Press, 2018. DOI:10.1201/9780429492563. [30] Pearl R, Reed L J.On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation[J]. Proceedings of the National Academy of Sciences, 1920, 6(6): 275-288. DOI:10.1073/pnas.6.6.275. [31] Volterra V.Fluctuations in the Abundance of a Species considered Mathematically[J]. Nature, 1926, 118(2972): 558-560. DOI:10.1038/118558a0. [32] Gauze G F.The struggle for existence[M]. Baltimore,: The Williams & Wilkins company, 1934. DOI:10.5962/bhl.title.4489. [33] Lafferty K D, DeLeo G, Briggs C J, et al. A general consumer-resource population model[J]. Science, 2015, 349(6250): 854-857. DOI:10.1126/science.aaa6224. [34] Jaime L, Batllori E, Lloret F.Bark beetle outbreaks in coniferous forests: a review of climate change effects[J]. European Journal of Forest Research, 2024, 143(1): 1-17. DOI:10.1007/s10342-023-01623-3. [35] Hughes T P, Kerry J T, Baird A H, et al.Global warming impairs stock-recruitment dynamics of corals[J]. Nature, 2019, 568(7752): 387-390. DOI:10.1038/s41586-019-1081-y. [36] Dakos V, Carpenter S R, Brock W A, et al.Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data[J]. PLoS ONE, 2012, 7(7): e41010. DOI:10.1371/journal.pone.0041010. [37] Volpert V, Petrovskii S.Reaction-diffusion waves in biology: new trends, recent developments[J]. Physics of Life Reviews, 2025, 52: 1-20. DOI:10.1016/j.plrev.2024.11.007. [38] McManus J W, Polsenberg J F. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects[J]. Progress in Oceanography, 2004, 60(2-4): 263-279. DOI:10.1016/j.pocean.2004.02.014. [39] Wei J, Liu B, Ren G.Dynamics of a Reaction-Diffusion-Advection System From River Ecology With Inflow[J]. Studies in Applied Mathematics, 2025, 154(1): e70012. DOI:10.1111/sapm.70012. [40] Consolo G, Currò C, Valenti G.Supercritical and subcritical Turing pattern formation in a hyperbolic vegetation model for flat arid environments[J]. Physica D: Nonlinear Phenomena, 2019, 398: 141-163. DOI:10.1016/j.physd.2019.03.006. [41] Xu J, Yu Z, Zhang T, et al.Near‐optimal control of a stochastic model for mountain pine beetles with pesticide application[J]. Studies in Applied Mathematics, 2022, 149(3): 678-704. DOI:10.1111/sapm.12517. [42] Morozov A, Poggiale J C.From spatially explicit ecological models to mean-field dynamics: The state of the art and perspectives[J]. Ecological Complexity, 2012, 10(1): 1-11. DOI:10.1016/j.ecocom.2012.04.001. [43] Kuznetsov Y A.Elements of Applied Bifurcation Theory[M]. Utrecht: Oxford University Press, 2023:55-58. DOI:10.1007/978-3-031-22007-4. [44] DEB S, BANERJEE M, GHORAI S.Analytical detection of stationary Turing pattern in a predator-prey system with generalist predator[J]. Mathematical Modelling of Natural Phenomena, 2022, 17: 33. DOI:10.1051/mmnp/2022032. [45] GUO C, ZHANG D, DU Z, et al.Effects of Grazing on the Grassland Vegetation Community Characteristics in Inner Mongolia[J]. Journal of Resources and Ecology, 2021, 12(3): 319-331. DOI:10.5814/j.issn.1674-764x.2021.03.002. [46] 张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. DOI:10.11821/dlxb202005005. [47] Van Belzen J, Van De Koppel J, Kirwan M L, et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation[J]. Nature Communications, 2017, 8(1): 15811. DOI:10.1038/ncomms15811. [48] Hu Z, Dakos V, Rietkerk M.Using functional indicators to detect state changes in terrestrial ecosystems[J]. Trends in Ecology & Evolution, 2022, 37(12): 1036-1045. DOI:10.1016/j.tree.2022.07.011. [49] Wang R, Dearing J A, Langdon P G, et al.Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7429): 419-422. DOI:10.1038/nature11655. [50] Holling C S.Understanding the Complexity of Economic, Ecological, and Social Systems[J]. Ecosystems, 2001, 4(5): 390-405. DOI:10.1007/s10021-001-0101-5. [51] Nash K L, Allen C R, Angeler D G, et al.Discontinuities, cross‐scale patterns, and the organization of ecosystems[J]. Ecology, 2014, 95(3): 654-667. DOI:10.1890/13-1315.1. [52] Ordonez J C, Cavalcanti E J C, Carvalho M. Energy, Exergy, Entropy Generation Minimization, and Exergoenvironmental Analyses of Energy Systems—A Mini-Review[J]. Frontiers in Sustainability, 2022, 3: 902071. DOI:10.3389/frsus.2022.902071. [53] Bodin Ö, Alexander S M, Baggio J, et al.Improving network approaches to the study of complex social-ecological interdependencies[J]. Nature Sustainability, 2019, 2(7): 551-559. DOI:10.1038/s41893-019-0308-0. [54] Galán-Vásquez E, Perez-Rueda E.Identification of Modules With Similar Gene Regulation and Metabolic Functions Based on Co-expression Data[J]. Frontiers in Molecular Biosciences, 2019, 6: 139. DOI:10.3389/fmolb.2019.00139. [55] Thirumalaikumar V P, Gorka M, Schulz K, et al.Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1[J]. Autophagy, 2021, 17(9): 2184-2199. DOI:10.1080/15548627.2020.1820778. [56] Hackerott S, Martell H A, Eirin-Lopez J M. Coral environmental memory: causes, mechanisms, and consequences for future reefs[J]. Trends in Ecology & Evolution, 2021, 36(11): 1011-1023. DOI:10.1016/j.tree.2021.06.014. [57] Wiśniewska M, O'Connell-Rodwell C E, Kilian J W, et al. Interplay of physical and social drivers of movement in male African savanna elephants[J]. Behavioral Ecology, 2024, 36(1): arae091. DOI:10.1093/beheco/arae091. [58] Newman M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8577-8582. DOI:10.1073/pnas.0601602103. [59] Fletcher R J, Revell A, Reichert B E, et al.Network modularity reveals critical scales for connectivity in ecology and evolution[J]. Nature Communications, 2013, 4(1): 2572. DOI:10.1038/ncomms3572. [60] WANG J, BARAHONA M, TANG Y J, et al.Natural Connectivity of Complex Networks[J]. Chinese Physics Letters, 2010, 27(7): 078902. DOI:10.1088/0256-307X/27/7/078902. [61] Isaac N J B, Jarzyna M A, Keil P, et al. Data Integration for Large-Scale Models of Species Distributions[J]. Trends in Ecology & Evolution, 2020, 35(1): 56-67. DOI:10.1016/j.tree.2019.08.006. [62] Arazy O, Malkinson D.A Framework of Observer-Based Biases in Citizen Science Biodiversity Monitoring: Semi-Structuring Unstructured Biodiversity Monitoring Protocols[J]. Frontiers in Ecology and Evolution, 2021, 9: 693602. DOI:10.3389/fevo.2021.693602. [63] Chang G J.Biodiversity estimation by environment drivers using machine/deep learning for ecological management[J]. Ecological Informatics, 2023, 78: 102319. DOI:10.1016/j.ecoinf.2023.102319. [64] Wu D, Zhao X, Liang S, et al.Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531. DOI:10.1111/gcb.12945. [65] Bai Y, Han X, Wu J, et al.Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431(7005): 181-184. DOI:10.1038/nature02850. [66] 蒙旭辉, 李向林, 辛晓平, 等. 不同放牧强度下羊草草甸草原群落特征及多样性分析[J]. 草地学报, 2009, 17(2): 239-244. DOI:10.11733/j.issn.1007-0435.2009.02.020. [67] Hiernaux P, Adamou Kalilou A, Kergoat L, et al.Woody plant decline in the Sahel of western Niger (1996-2017): is it driven by climate or land use changes?[J]. Journal of Arid Environments, 2022, 200: 104719. DOI:10.1016/j.jaridenv.2022.104719. [68] Hinojo-Hinojo C, Castellanos A E, Huxman T, et al.Native shrubland and managed buffelgrass savanna in drylands: Implications for ecosystem carbon and water fluxes[J]. Agricultural and Forest Meteorology, 2019, 268: 269-278. DOI:10.1016/j.agrformet.2019.01.030. [69] Shanahan T M, Hughen K A, McKay N P, et al. CO2 and fire influence tropical ecosystem stability in response to climate change[J]. Scientific Reports, 2016, 6(1): 29587. DOI:10.1038/srep29587. [70] Venegas R M, Acevedo J, Treml E A.Three decades of ocean warming impacts on marine ecosystems: A review and perspective[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2023, 212: 105318. DOI:10.1016/j.dsr2.2023.105318. [71] Perry A L, Low P J, Ellis J R, et al.Climate Change and Distribution Shifts in Marine Fishes[J]. Science, 2005, 308(5730): 1912-1915. DOI:10.1126/science.1111322. [72] Dahms C, Killen S.Temperature change effects on marine fish range shifts: a meta-analysis of ecological and methodological predictors[J]. Global Change Biology, 2023, 29(1): 4459-4479. DOI:10.32942/X2C88T. [73] DeVries T, Quéré C, Andrews O, et al. Decadal trends in the ocean carbon sink[J]. Proceedings of the National Academy of Sciences, 2019, 116(24): 11646-11651. DOI:10.1073/pnas.1900371116. [74] Hoegh-Guldberg O, Poloczanska E S, Skirving W, et al.Coral Reef Ecosystems under Climate Change and Ocean Acidification[J]. Frontiers in Marine Science, 2017, 4: 158. DOI:10.3389/fmars.2017.00158. [75] Hughes T P, Kerry J T, Baird A H, et al.Global warming transforms coral reef assemblages[J]. Nature, 2018, 556(7702): 492-496. DOI:10.1038/s41586-018-0041-2. [76] Wang S, Yu H, Dai C, et al.The Dynamical Behavior of a Predator-Prey System with Holling Type II Functional Response and Allee Effect[J]. Applied Mathematics, 2020, 11(5): 407-425. DOI:10.4236/am.2020.115029. [77] Wilmers C C, Estes J A, Edwards M, et al.Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests[J]. Frontiers in Ecology and the Environment, 2012, 10(8): 409-415. DOI:10.1890/110176. [78] Bonan G B.Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests[J]. Science, 2008, 320(5882): 1444-1449. DOI:10.1126/science.1155121. [79] Lovejoy T E, Nobre C. Amazon Tipping Point[J]. Science Advances, 2018, 4(2): eaat2340. DOI:10.1126/sciadv.aat2340. [80] Costa M H, Foley J A.Combined Effects of Deforestation and Doubled Atmospheric CO2 Concentrations on the Climate of Amazonia[J]. Journal of Climate, 2000, 13(1): 18-34. DOI:10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2. [81] Spracklen D V, Arnold S R, Taylor C M.Observations of increased tropical rainfall preceded by air passage over forests[J]. Nature, 2012, 489(7415): 282-285. DOI:10.1038/nature11390. [82] Euskirchen E S, Bennett A P, Breen A L, et al.Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada[J]. Environmental Research Letters, 2016, 11(10): 105003. DOI:10.1088/1748-9326/11/10/105003. [83] Davidson A, Wang S.The effects of sampling resolution on the surface albedos of dominant land cover types in the North American boreal region[J]. Remote Sensing of Environment, 2004, 93(1-2): 211-224. DOI:10.1016/j.rse.2004.07.005. [84] Janssens I A, Dieleman W, Luyssaert S, et al.Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. DOI:10.1038/ngeo844. [85] Camenzind T, Hättenschwiler S, Treseder K K, et al.Nutrient limitation of soil microbial processes in tropical forests[J]. Ecological Monographs, 2018, 88(1): 4-21. DOI:10.1002/ecm.1279. [86] 王汝南, 蔺兆兰, 王春梅. 氮沉降对森林土壤碳收支机制的影响[J]. 生态环境学报, 2011, 20(3): 576-582. DOI:10.16258/j.cnki.1674-5906.2011.03.011. [87] Fu W, Wu H, Zhao A H, et al.Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects[J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. DOI:10.17521/cjpe.2019.0163. [88] Frey S D, Knorr M, Parrent J L, et al.Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1): 159-171. DOI:10.1016/j.foreco.2004.03.018. [89] Lu X, Mao Q, Gilliam F S, et al.Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Global Change Biology, 2014, 20(12): 3790-3801. DOI:10.1111/gcb.12665. [90] Barnosky A D, Hadly E A, Bascompte J, et al.Approaching a state shift in Earth's biosphere[J]. Nature, 2012, 486(7401): 52-58. DOI:10.1038/nature11018. [91] Shukla J, Nobre C, Sellers P.Amazon Deforestation and Climate Change[J]. Science, 1990, 247(4948): 1322-1325. DOI:10.1126/science.247.4948.1322. [92] Yadav J, Kumar A, Mohan R, et al. Anomalous Arctic Sea Ice Melting Linked to Recent Warming Amplification[EB/OL]. (2022-03-10)[2025-04-15]. https://doi.org/10.21203/rs.3.rs-1216059/v1. DOI:10.21203/rs.3.rs-1216059/v1. [93] Wąs A, Krupin V, Kobus P, et al.Towards Climate Neutrality in Poland by 2050: Assessment of Policy Implications in the Farm Sector[J]. Energies, 2021, 14(22): 7595. DOI:10.3390/en14227595. [94] Moore J C, De Ruiter P C. Energetic Food Webs: An Analysis of Real and Model Ecosystems[M]. Oxford: Oxford University Press, 2012:40-45. DOI:10.1093/acprof:oso/9780198566182.001.0001. [95] Yang H, Cao J, Hou X.Study on the Evaluation and Assessment of Ecosystem Service Spatial Differentiation at Different Scales in Mountainous Areas around the Beijing-Tianjin-Hebei Region, China[J]. International Journal of Environmental Research and Public Health, 2023, 20(2): 1639. DOI:10.3390/ijerph20021639. [96] Landi P, Minoarivelo H O, Brännström Å, et al.Complexity and stability of ecological networks: a review of the theory[J]. Population Ecology, 2018, 60(4): 319-345. DOI:10.1007/s10144-018-0628-3. [97] Hao Y, Wang X, Zhao T, et al. A framework for quantifying state transitions in complex ecosystems using energy flow networks[J]. Science Bulletin, 2025, in press. DOI:10.1016/j.scib.2025.04.076. [98] Hughes T P, Anderson K D, Connolly S R, et al.Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80-83. DOI:10.1126/science.aan8048. [99] Liang M, Yang Q, Chase J M, et al. Unifying spatial scaling laws of biodiversity and ecosystem stability[J]. Science, 2025, 387(6740): eadl2373. DOI:10.1126/science.adl2373. |