[1] He T, Zeng Y H, Hu Z L.Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning[J]. IEEE Access, 2019, 7: 114955-114965. DOI: 10.1109/ACCESS.2019.2935208. [2] 芦肇基,沈艳霞,谭永强. 基于多结构融合WGAN的模糊绝缘子图像复原方法研究[J]. 电力系统保护与控制,2024,52(22):166-175. DOI:10.19783/j.cnki.pspc.240115. [3] Xu C, Li Q W, Zhou Q K, et al.Power line-guided automatic electric transmission line inspection system[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3512118. DOI: 10.1109/TIM.2022.3169555. [4] 麻卫峰,王成,王金亮,等. 点云数据温度变化环境下输电线形态模拟[J]. 电力系统保护与控制,2021,49(9):90-96. DOI:10.19783/j.cnki.pspc.200873. [5] 梁磊,习晓环,王成,等. 基于B/S架构的激光雷达电力巡线可视化管理与分析系统[J]. 中国科学院大学学报,2022,39(2):201-207. DOI:10.7523/j.ucas.2020.0044. [6] Liu X N, Shuang F, Li Y, et al.SS-IPLE: Semantic segmentation of electric power corridor scene and individual power line extraction from UAV-based lidar point cloud[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 38-50. DOI: 10.1109/JSTARS.2023.3289599. [7] Xie Y X, Tian J J, Zhu X X.Linking points with labels in 3D: a review of point cloud semantic segmentation[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59. DOI: 10.1109/MGRS.2019.2937630. [8] Yermo M, Laso R, Lorenzo O G, et al.Powerline detection and characterization in general-purpose airborne LiDAR surveys[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10137-10157. DOI: 10.1109/JSTARS.2024.3396522. [9] Chen M L, Li J Y, Pan J P, et al.Insulator extraction from UAV LiDAR point cloud based on multi-type and multi-scale feature histogram[J]. Drones, 2024, 8(6): 241. DOI: 10.3390/drones8060241. [10] Zhang J X, Lin X G, Ning X G.SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J]. Remote Sensing, 2013, 5(8): 3749-3775. DOI: 10.3390/rs5083749. [11] Chehata N, Guo L, Mallet C.Airborne lidar feature selection for urban classification using random forests[C]//ISPRS Workshop on Laser Scanning 2009. September 1-2, 2009, Paris, France. ISPRS, 2009: 135-140. [12] Zhuang Y, Liu Y S, He G J, et al.Contextual classification of 3D laser points with conditional random fields in urban environments[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). September 28 - October 2, 2015, Hamburg, Germany. IEEE, 2015: 3908-3913. DOI: 10.1109/IROS.2015.7353927. [13] Huang J J, Shen Y Q, Wang J G, et al.Automatic pylon extraction using color-aided classification from UAV LiDAR point cloud data[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2520611. DOI: 10.1109/TIM.2023.3293543. [14] Tang Q Y, Zhang L T, Lan G W, et al.A classification method of point clouds of transmission line corridor based on improved random forest and multi-scale features[J]. Sensors, 2023, 23(3): 1320. DOI: 10.3390/s23031320. [15] Liu Y X, Aleksandrov M, Zlatanova S, et al.Classification of power facility point clouds from unmanned aerial vehicles based on adaboost and topological constraints[J]. Sensors, 2019, 19(21): 4717. DOI: 10.3390/s19214717. [16] Chen C, Jin A, Yang B S, et al.DCPLD-Net:A diffusion coupled convolution neural network for real-time power transmission lines detection from UAV-Borne LiDAR data[J]. International Journal of Applied Earth Observation and Geoinformation,2022, 112: 102960. DOI: 10.1016/j.jag.2022.102960. [17] 王文曦,李乐林. 深度学习在点云分类中的研究综述[J]. 计算机工程与应用,2022,58(1):26-40. DOI:10.3778/j.issn.1002-8331.2105-0200. [18] Caros M, Just A, Segui S.Object segmentation of cluttered airborne lidar point cloudsM//Puig V, ed. Artificial Intelligence Research and Development. Amsterdam: IOS Press, 2022: 259-268. DOI: 10.3233/FAIA220347. [19] Wang G J, Wang L N, Wu S C, et al.Semantic segmentation of transmission corridor 3D point clouds based on CA-PointNet++[J]. Electronics, 2023, 12(13): 2829. DOI: 10.3390/electronics12132829. [20] Zhou Y Y, Feng Z Y, Chen C L, et al.Bilinear distance feature network for semantic segmentation in PowerLine corridor point clouds[J]. Sensors, 2024, 24(15): 5021. DOI: 10.3390/s24155021. [21] Kumar V, Nandy A, Soni V, et al.Powerline extraction from aerial and mobile LiDAR data using deep learning[J]. Earth Science Informatics, 2024, 17(4): 2819-2833. DOI: 10.1007/s12145-024-01310-w. [22] Liu T Z, Hu B Y, Gu Y F, et al.An enhanced classification method based on adaptive multi-scale fusion for long-tailed multispectral point clouds[J]. Science China Information Sciences, 2025, 68(8): 182302. DOI: 10.1007/s11432-024-4324-6. [23] Jiang Y Z, Gu Y F, Li X.Pillar-voxel fusion network for 3D object detection in airborne hyperspectral point clouds[J]. Science China Information Sciences, 2026, 69(1): 112301. DOI: 10.1007/s11432-024-4458-0. [24] Peng S W, Xi X H, Wang C, et al.Point-based multilevel domain adaptation for point cloud segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6500605. DOI: 10.1109/LGRS.2020.3037702. [25] 李建,王健,王雷,等. 双重注意力机制的电力走廊点云语义分割[J]. 测绘通报,2025(4):127-133. DOI: 10.13474/j.cnki.11-2246.2025.0421. [26] Thomas H, Qi C R, Deschaud J E, et al.KPConv: Flexible and deformable convolution for point clouds[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea. IEEE, 2019: 6411-6420. DOI: 10.1109/ICCV.2019.00651. [27] Melekhov I, Umashankar A, Kim H J, et al.ECLAIR: A high-fidelity aerial LiDAR dataset for semantic segmentation[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 17-18, 2024, Seattle, WA, USA. IEEE, 2024: 7627-7637. DOI: 10.1109/CVPRW63382.2024.00758. [28] Hu Q Y, Yang B, Xie L H, et al.RandLA-net: Efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020, Seattle, WA, USA. IEEE, 2020: 11108-11117. DOI: 10.1109/CVPR42600.2020.01112. |