欢迎访问中国科学院大学学报,今天是

中国科学院大学学报 ›› 2007, Vol. 24 ›› Issue (1): 93-98.DOI: 10.7523/j.issn.2095-6134.2007.1.014

• 论文 • 上一篇    下一篇

基于种子点增长的SAR图像海岸线自动提取算法

谢明鸿 张亚飞 付 琨   

  1. 中国科学院电子学研究所
  • 收稿日期:1900-01-01 修回日期:1900-01-01 发布日期:2007-01-15

Algorithm of Detection Coastline from SAR Images Based on Seeds Growing

XIE Ming-Hong, ZHANG Ya-Fei, FU Kun   

  1. Institute of Electronics, Chinese Academy of Sciences
  • Received:1900-01-01 Revised:1900-01-01 Published:2007-01-15

摘要: SAR图像中斑点噪声的存在使得很难利用简单的阈值分割技术对其进行海岸线提取,而很多基于复杂数学模型的提取算法又常常由于较慢的检测速度限制了它们的应用。本文基于种子点增长的思想,给出了一种快速的海岸线自动提取算法。首先该算法利用象素值统计信息自动定位一个初始种子点区域,并计算初始均值M与初始阈值T。然后基于不断更新的M和T进行海域点增长。增长结束后,对得到的连通海域进行轮廓边界跟踪从而确定出具体的海岸线位置。将其应用于真实的SAR图像,证明了该算法的有效性和实时性。

关键词: SAR图像 海岸线提取 种子点增长

Abstract:

It is very difficult to extract the shoreline from SAR images by using a simple threshold technique for the presence of speckles. The applications of many coastline detection algorithms based on complex mathematic models are limited for their huge time consuming. A fast method is presented in this paper based on the idea of seeds growing. First, it locates the initial seeds region automatically based on statistic information of pixel values. Then, the initial mean M and threshold T are calculated. Next, seeds-growing is performed based on the M and T which are updated continuously. After the seeds-growing is ended, the location of the shoreline is extracted from the connected sea region by a traditional contour tracing algorithm. Experimental results using real SAR images indicate that it is an effective and real-time algorithm.

Key words: FONT-FAMILY: Verdana, mso-fareast-font-family: 宋体, mso-font-kerning: 1.0pt, mso-bidi-font-family: 'Times New Roman', mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA">SAR Images, coastline detection, seeds growing

中图分类号: