欢迎访问中国科学院大学学报,今天是

中国科学院大学学报

• • 上一篇    下一篇

半夏属的染色体数目、倍性与珠芽发生的关系

李名旺, 顾德兴, 刘友良, 徐炳声   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:1997-05-10 发布日期:1997-05-10
  • 通讯作者: 李名旺

Relationship Between Occurrence of Bulbils and Chromosome Number and Ploidy in Pinellia (Araceae)

Li Ming-wang, Gu De-xing, Liu You-liang, Hsu Ping-sheng   

  • Received:1900-01-01 Revised:1900-01-01 Online:1997-05-10 Published:1997-05-10
  • Contact: Li Ming-wang

摘要:

本文通过对半夏属Pinellia 5个种10个群体的染色体计数和珠芽数量统计,首次报道了5个染色体数目,同时发现珠芽的发生与染色体基数及多倍化程度有关:x=13的类群无珠芽,而x=9的有珠芽;在有珠芽的半夏P.ternata(Thunb.)Breit.中,平均每叶珠芽数随倍性的提高而增大。半夏是一个多倍体复合种,起源于无珠芽、染色体基数为x=7~9的二倍体祖先,可能是在该属的早期进化中由鹞落坪半夏P.yaoluopingensis X.H.Guo et X.L.Liu的x=13经非整倍性跌落而成,在发生上比鹞落坪半夏进化。

关键词: 半夏属, 染色体基数, 倍性, 珠芽发生

Abstract:

By examining the somatic chromosome numbers and average numbers of bulbils per leaf of 10 populations belonging to 5 species of Pinellia, 5 chromosome numbers (P.peltata Pei 2n = 78, P. cordata N. E. Brown 2n= 72, P. ternata (Thunb.) Breit. 2n= 54,99,108) new to this genus are reported. The present work also shows that the species with x= 13 including P. yaoluopingensis X. H. Guo et X. L. Liu (popullation Ⅰ ~ Ⅲ ), P. tripartita (Blume) Schott (previous reports), P. pedatisecta Schott (population Ⅳ)and P. peltata (population Ⅴ )have no bulbils at all,while those with x= 9 including P. cordata (population Ⅵ ) and P. ternata (population Ⅶ ~ Ⅹ )have bulbils more or less depending on their ploidy-the average number of bulbils per leaf of hexaploid (population Ⅶ ) is only 0. 043,which is much lower than 1.95 of that of dodecaploids (population Ⅹ ). Based on these observations, it could be supposed that polyploidy reinforce apomixis, the diploid ancestors of P.ternata have no bulbils and in Pinellia, x= 13 may be more primitive than x = 9. The chromosome counts of the Araceae are changeable and complex, but appear to be explainable on the dual basis of ascending and descending dysploidy at secondary (paleopolyploid)level from a primitive basic number x = 7. P. ternata is a polyploid complex and probably it came from a diploid ancestors without bulbils and with x = 7,8,9, etc. The basic chromosome numbers x=7,8,9 of Pinellia ternata may have been derived from x= 13 of P. yaoluopingensis by descending dysploidy in the early stage of the evolution of this genus. Then, as a result of secondary polyploidy, bulbils which enable the species to adapt to its varied environments occur and they might lead to a more rapid evolution in this species.

Key words: Pinellia, Chromosome basic numbers, Ploidy, Bulbil occurrence