[1] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent [J]. Commun Pure Appl Math, 1983, 36: 437-477.
[2] Ferrero A, Gazzola F. Existence of solutions for singular critical growthsemilinear elliptic equations [J]. J Differential Equations, 2001, 177: 494-522.
[3] Smets D. Nonlinear Schr¨oinger equations with Hardy potential and critical nonlinearities [J]. Trans Amer Math Soc, 2005,357: 2909-2938.
[4] Cao D, He X, Peng S. Positive solutions for some singular critical growth nonlinear elliptic equations [J]. Nonlinear Anal TMA, 2005, 60: 589-609.
[5] Cao D, Han P. Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J]. J Differential Equations, 2004, 205: 521-537.
[6] Han P, Liu Z. Solutions for a singular critical growth problem with a weight [J]. J Math Anal Appl, 2007, 327: 1075-1085.
[7] He X, Zou W. Nontrivial solutions for some singular critical growth semilinear elliptic equations [J]. Nonlinear Anal TMA, 2008, 68: 3719-3732.
[8] Chen J. Multiplicity result for a singular elliptic equation with indefinite nonlinearity [J]. J Math Anal Appl, 2008, 337: 493-504.
[9] Guo Q, Cui X. Positive solutions for semilinear elliptic equations with critical Sobolev exponents [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(2): 158- 166(in Chinese). 郭千桥,崔学伟.具有Sobolev临界指数的半线性椭圆方程的正解 [J].中国科学院研究生院学报, 2009, 26(2): 158-166.
[10] Kang D, Peng S. Positive solutions for singular critical elliptic problems [J]. Appl Math Lett, 2004, 17(4): 411-416.
[11] Kang D, Peng S. Solutions for semi-linear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential [J]. Appl Math Lett, 2005, 18(10): 1094-1100.
[12] Gao W, Peng S. An elliptic equation with combined critical Sobolev-Hardy terms [J]. Nonlinear Anal TMA, 2006, 65: 1595-1612.
[13] Ghoussoub N, Kang X S. Hardy-Sobolev critical elliptic equations with boundary singularities [J]. Ann I H Poincar-AN 2004, 21: 767 -793.
[14] Kang D, Peng S. Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents [J]. Israel J Math, 2004, 143: 281-298.
[15] Guo Q, Niu P, Dou J. Multiplicity of solutions for singular semilinear elliptic equations with critical Hardy-Sobolev exponents [J]. Applicable Analysis and Discrete Mathematics, 2008, 2: 158-174.
[16] Willem M. Minimax theorems [M]. Berlin: Birkhauser, Boston, Basel, 1996.
|