[1] SIDS initial assessment report for SIAM 4 . Ispra, Italy, UNEP Publications, 1995: 23-25.
[2] Baker B, Guenther A, Greenberg J,et al.Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: Field data and model comparison [J]. Journal of Geophysical Research, 1999, 104: 26107-26114.
[3] Schade G W, Goldstein A H, Gray D W, et al. Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation [J]. Atmospheric Environment, 2000, 34: 3535-3544.
[4] Chan W H, Galloway M M, Kwan A J, et al. Photooxidation of 2-Methyl-3-buten-2-ol (MBO) as a potential source of secondary organic aerosol [J]. Environmental Science and Technology, 2009, 43: 4647-4652.
[5] Fantechi G, Jensen N R, Hjorth J, et al. Mechanistic studies of the atmospheric oxidation of methyl butenol by OH radicals, ozone and NO3 radicals [J]. Atmospheric Environment, 1998, 32: 3547-3566.
[6] Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review [J]. Atmospheric Environment, 2003, 37: 197-219.
[7] Carrasco N, Doussin J F, O’Connor M, et al. Simulation chamber studies of the atmospheric oxidation of 2-Methyl-3-Buten-2-ol: reaction with Hydroxyl Radicals and Ozone under a variety of conditions [J]. Journal of Atmospheric Chemistry, 2007, 56: 33-55.
[8] Steiner A L, Tonse S, Cohen R C, et al. Biogenic 2-methyl-3-buten-2-ol increases regional ozone and HO<em>x sources [J]. Geophysical Research Letters, 2007, 34:15806(1-6).
[9] Vajda J H, Harrison A G. Proton affinities of some olefinic carbonyl compounds and heats of formation of C<em>nH2n-1O+ ions [J]. International Journal of Mass Spectrometry and Ion Physics, 1979, 30: 293-306.
[10] Zwinselman J J, Nibbering N M, Middlemiss N E, et al. A field Ionization kinetics and metastable ion study of the fragmentation of some pentenols [J]. Journal of Geophysical Research, 1981, 38: 163-179.
[11] Rudich Y, Talukdar R, Burkholder J B, et al. Reaction of methylbutenol with Hydroxyl radical: mechanism and atmospheric implications [J]. Journal of Physical Chemistry, 1995, 99: 12188-12194.
[12] Curtiss L A, Raghavachari K, Redfern P C, et al. Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J]. Journal of Chemical Physics, 1998, 109: 7764-7776.
[13] Baboul A G, Curtiss L A, Redfern P C, et al. Gaussian-3 theory using density functional geometries and zero-point energies [J]. Journal of Chemical Physics, 1999, 110: 7650-7657.
[14] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C.01 . .http://www.psc.edu/general/software/packages/gaussian/G03C01_release_notes.html. Gaussian: Wallingford,CT, 2004.
[15] Wang S S, Kong R H, Shan X B, et al. Performance of the atomic and molecular physics beamline at the National Synchrotron Radiation Laboratory [J]. Journal of Synchrotron Radiation, 2006, 13: 415-420.
[16] Kong R H, Shan X B, Wang S S, et al. Experimental and theoretical study of Ne…CO cluster [J]. Journal of Electron Spectroscopy and Related Phenomena, 2007, 160: 49-53.
[17] Levy M, Yang W, Parr R G. A new functional with homogeneous coordinate scaling in density functional theory [J]. Journal of Chemical Physics, 1985, 83: 2334-2336.
[18] Kohn W, Becke A D, Parr R G. Density functional theory of electronic structure [J].Journal of Physical Chemistry, 1996, 100: 12974-12980.
[19] Chiang S Y, Bahou M, Sankaran K, et al. Dissociative photoionization of CH2Cl2 and enthalpy of formation of CHCl+: experiments and calculations [J]. Journal of Chemical Physics, 2003, 62: 118-125.
[20] Wang Z Y, Hao L Q, Zhou S K, et al. VUV dissociative photoionization of CHF2Cl [J]. Journal of Molecular Structure, 2007, 826: 192-197.
[21] NIST. 3-Buten-2-01,2-methyl-. .http://webbook.nist.gov/cgi/cbook.cgi?ID=C115184&Units=SI&Mask=2A0.
|