[1] Candes E, Donoho D. New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities [J]. Comm on Pure and Appl Math,2004, 57:219-266.
[2] Donoho D L, Duncan M R. Digital curvelet transform (strategy implementation and experiments):technical report . California Institute of Technology: Department of Stanford University, 1999.
[3] Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms [J]. Multiscale Model Simul, 2006, 5(3): 861-899.
[4] Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising [J]. IEEE Transaction on Image Processing, 2002, 11(6): 670-683.
[5] Starck J L, Murtagh F, Candes E J, et al. Gray and color image contrast enhancement by the curvelet transform [J]. IEEE Transactions on Image Processing,2003, 12(6).
[6] An R, Tan Y. A combined curvelet and wavelet denoising method for SAR images [J]. Computer Simulation, 2008, 25(3): 298-301 (in Chinese). 安冉, 谭勇. 一种联合小曲与小波的SAR图像降噪方法 [J]. 计算机仿真, 2008, 25(3): 298-301.
[7] Herrmann Felix J, Verschuur Eric. Curvelet-domain multiple elimination with sparseness constraints //74th Ann Internat Mtg. Soc of Expl Geophys. 2004:1333-1336.
[8] W Goodman J. Some fundamental properties of speckle [J]. Jour of Optical Society of America, 1976, 66(11): 1105-1150.
[9] Xiao X K, Li S F. Edge-preserving image denoising method using Curvelet transform [J]. Journal of China Institute of Communications, 2004, 25(2): 9-15 (in Chinese). 肖小奎,黎绍发. 加强边缘保护的Curvelet图像去噪方法 [J].通信学报,2004,25(2):9-15.
[10] Geback T, Koumoutsakos P. Edge detection in microscopy images using curvelets [J]. BMC Bioinformatics,2009, 10:75.
|