[1] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets [J]. J Theoretical Biology, 1969, 22:437-467.
[2] Harris S E, Sawhill B K, Wuensche A, et al. A model of transcriptional regulatory networks based on biases in the observed regulation rules [J]. Complexity, 2002, 7: 23-40.
[3] Aldana M. Boolean dynamics of networks with scale-free topology [J]. Physica D, 2003, 185:45-66.
[4] Drossel B, Mihaljev T, Greil F. Number and length of attractors in a critical kauffman moel with connectivity one [J]. Phys Rev Lett, 2005, 94:088701.
[5] Kauffman S A. The origins of order [M]. New York: Oxford Univ Press, 1993.
[6] Akutsu T, Hayashida M, Ching W K, et al. Control of Boolean networks: Hardness results and algorithms for tree structured networks [J]. J Theoretical Biology, 2007, 244:670-679.
[7] Cheng D, Qi H. A linear representation of dynamics of Boolean networks [J]. IEEE Trans Aut Contr, 2010, 55(10):2251-2258.
[8] Cheng D. Input-state approach to Boolean networks [J]. IEEE Trans Neural Network, 2009, 20(3):512-521.
[9] Cheng D, Qi H. Controllability and observability of Boolean control networks [J]. Automatica, 2009, 45(7):1659-1667.
[10] Cheng D, Li Z, Qi H. Realization of Boolean control networks [J]. Automatica, 2010, 46(1):62-69.
[11] Cheng D, Liu J. Stabilization of Boolean control networks //Proc CDC-CCC'09. Shanghai, 2009:5269-5274.
[12] Cheng D, Li Z, Qi H. Canalyzing Boolean mapping and its application to disturbance decoupling of Boolean control networks //Proc of ICCA09. Christchurch, New Zealand, 2009:7-12.
[13] Goodwin B C. Temporal organization in cells [M]. New York: Academic, 1963.
[14] Gibbons R. A Promer in game thoery [M]. London: Prentice Hall, 1992.
[15] Miller J H. The coevolution of automata in the repeated prisoner’s dilemma [J]. J Economic Behavior & Organization, 1994, 29:87-112.
[16] Mu Y, Guo L. Optimization and identification in a non-equilibrium dynamic game //Proc CDC-CCC'09. Shanghai, 2009: 5750-5755.
[17] De Luca A. On some dynamical properties of linear and affine networks [J]. Kybernetic, 1971, 8(4):123-127.
[18] Heidel J, Maloney J, Farrow J, et al. Finding cycles in synchronous Boolean networks with applications to biochemical systems [J]. Int J Bifurcat Chaos, 2003, 13(3):535-552.
[19] Cheng D, Qi H. Semi-tensor product of matrix ——theory and applications [M]. Beijing: Science Press, 2007.
[20] Cheng D. Semi-tensor product of matrices and its applications——A survey //ICCM 2007. 2007, 3:641-668.
|