|    [1] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets  [J]. J Theoretical Biology, 1969, 22:437-467. 
 [2] Harris S E, Sawhill B K, Wuensche A, et al. A model of transcriptional regulatory networks based on biases in the observed regulation rules  [J]. Complexity, 2002, 7: 23-40. 
 [3] Aldana M. Boolean dynamics of networks with scale-free topology  [J]. Physica D, 2003, 185:45-66. 
 [4] Drossel B, Mihaljev T, Greil F. Number and length of attractors in a critical kauffman moel with connectivity one  [J]. Phys Rev Lett, 2005, 94:088701. 
 [5] Kauffman S A. The origins of order  [M]. New York: Oxford Univ Press, 1993. 
 [6] Akutsu T, Hayashida M, Ching W K, et al. Control of Boolean networks: Hardness results and algorithms for tree structured networks  [J]. J Theoretical Biology, 2007, 244:670-679. 
 [7] Cheng D, Qi H. A linear representation of dynamics of Boolean networks  [J]. IEEE Trans Aut Contr, 2010, 55(10):2251-2258. 
 [8] Cheng D. Input-state approach to Boolean networks  [J]. IEEE Trans Neural Network, 2009, 20(3):512-521. 
 [9] Cheng D, Qi H. Controllability and observability of Boolean control networks  [J]. Automatica, 2009, 45(7):1659-1667. 
 [10] Cheng D, Li Z, Qi H. Realization of Boolean control networks  [J]. Automatica, 2010, 46(1):62-69. 
 [11] Cheng D, Liu J. Stabilization of Boolean control networks //Proc CDC-CCC'09. Shanghai, 2009:5269-5274. 
 [12] Cheng D, Li Z, Qi H. Canalyzing Boolean mapping and its application to disturbance decoupling of Boolean control networks //Proc of ICCA09. Christchurch, New Zealand, 2009:7-12. 
 [13] Goodwin B C. Temporal organization in cells  [M]. New York: Academic, 1963. 
 [14] Gibbons R. A Promer in game thoery  [M]. London: Prentice Hall, 1992. 
 [15] Miller J H. The coevolution of automata in the repeated prisoner’s dilemma  [J]. J Economic Behavior & Organization, 1994, 29:87-112. 
 [16] Mu Y, Guo L. Optimization and identification in a non-equilibrium dynamic game //Proc CDC-CCC'09. Shanghai, 2009: 5750-5755. 
 [17] De Luca A. On some dynamical properties of linear and affine networks  [J]. Kybernetic, 1971, 8(4):123-127. 
 [18] Heidel J, Maloney J, Farrow J, et al. Finding cycles in synchronous Boolean networks with applications to biochemical systems  [J]. Int J Bifurcat Chaos, 2003, 13(3):535-552. 
 [19] Cheng D, Qi H. Semi-tensor product of matrix ——theory and applications  [M]. Beijing: Science Press, 2007. 
 [20] Cheng D. Semi-tensor product of matrices and its applications——A survey //ICCM 2007. 2007, 3:641-668.
  |