[1] Garca Azorero J, Peral Alonso I. Multiplicity of solutions for elliptic problems with critical exponent or with a non-symmetric term [J]. Trans Amer Math Soc, 1991, 323(2): 877- 895.
[2] Garcia Azorero J, Peral Alonso I. Some results about the existence of a second positive solution in a quasilinear critical problem [J]. Indiana Univ Math J, 1994, 43(3): 941-957.
[3] Huang Y X. Positive solutions of certain elliptic equations involving critical Sobolev exponents [J]. Nonlinear Analysis TMA, 1998, 33(6): 617- 636.
[4] Tan Z, Yao Z G. The existence of multiple solutions of p-Laplacian elliptic equation [J]. Acta Mathematica Scientia, 2001, 21B(2): 203-212.
[5] Gazzola F, Malchiodi A. Some remarks on the equation -Δ u=λ(1+u)p for varying λ, p and varying domains [J]. Comm Partial Differential Equations, 2002, 27(4): 809- 845.
[6] Sun Y J, Li S J. A nonlinear elliptic equation with critical exponent: Estimates for extremal values [J]. Nonlinear Analysis TMA, 2008, 69(5): 1856-1869.
[7] Sun Y J, Li S J. Some remarks on a superlinear-singular problem: Estimates of λ* [J]. Nonlinear Analysis TMA, 2008, 69(8): 2636-2650.
[8] Talenti G. Best constant in sobolev inequality [J]. Ann Math Pure Appl, 1976, 110(1): 353-372.
[9] Chang K C. Methods in nonlinear analysis [M]. Heidelberg: Springer-Verlag, 2005.
|