[1] Bloch S. Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, volume 11 of CRM monograph series[M]. Providence, RI: American Mathematical Society, 2000.
[2] Ramakrishnan D. Regulators, algebraic cycles, and values of L-functions //Stein M R, Dennis R K(ed). Algebraic K-theory and Algebraic Number Theory Contemporary Mathematics, vol 83. Providence, RI: American Mathematical Society, 1989: 183-310.
[3] Dokchitser T, de Jeu R, Zagier D. Numerical verification of Beilinson’s conjecture for K2 of hyperelliptic curves[J]. Comp Math, 2006, 142(2):339-373.
[4] Milnor J. Introdunction to algebraic K-theory, annals of matematics studies, 72[M]. Princeton, NJ: Princeton Unipersty Press, 1971.
[5] Ross R. K2 of Fermat curves with divisorial support at infinity[J]. Compositio Math, 1994, 91: 223-240.
[6] Ross R. K2 of Fermat cureves and values of L-functions[J]. C R Acad Sci Paris, t 312, Serie I, 1991: 1-5.
[7] Kimura K. K2 of Fermat quotient and the values of its L-functoin[J]. K-Theory, 1996, 10: 73-82.
[8] Bloch S, Grayson D. K2 and L-functions of elliptic curves[J]. Contemp Math, 1996, 55: 79-88.
[9] Cox D. What is a toric variety //Goldman R, Krasauskas R (ed). Algebraic Geometry and Geometric Modeling, Contemporary Mathematics 334. Providence, RI: American Mathematical Society, 2003: 203-223.
[10] Fulton W. Introduction to toric varieties, annals of matematics studies, 131[M]. Princeton, NJ: Princeton Unipersty Press, 1993.
[11] Silverman J. The arithmetic of elliptic curves[M]. Berlin and New York: Springer-Verlag, 1986.
[12] Silverman J. Advanced topics in the arithmetic of elliptic curves[M]. Berlin and New York: Springer-Verlag, 1994.
[13] Bosman J. Boyd’s conjecture for a family of genus 2 curves. Warwick: Warwick University, 2004.
[14] Villegas F R. Modular Mahler measures I //Ahlgren S D, Andrews G E, Ono K (ed). Topics in Number Theory. Dordrecht: Kluwer, 1999: 17-48.
[15] Rohrlich D E. Elliptic curves and values of L-functions[J]. Canad Math Soc Proc, 1987, 7: 371-387. |