[1] Friedman N, Linial M, Nachman I, et al. Using Bayesian network to analyze expression data[J]. Journal of Computational Biology, 2000, 7: 601-620.
[2] Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks: Technical Report. Berkeley: Computer Science Division, University of California, 1999.
[3] Zou M, Conzen S D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time Course microarray data[J]. Bioinformatics, 2005, 21(1): 71-79.
[4] Albert I, Albert R. Conserved network motifs allow protein——protein interaction prediction[J]. Bioinformatics, 2004, 20: 3346-3352.
[5] Butte A J, Kohane I S. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements[J]. Pacific Symposium on Biocomputing, 2000, 5: 415-426.
[6] Hartemink A J, Gifford D K, Jaakkola T S, et al. Combing location and expression data for principled discovery of genetic regulatory network models //Proc Pacific Symposium on Biocomputing. Kauai, World Scientific Press, 2002: 437-449.
[7] Heckerman D, Geiger D, Chichering D. Learning Bayesian networks: the combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3):197-243.
[8] Segal E, Barash Y, Simon I, et al. From promoter sequence to expression: a probabilistic framework //Proceedings of the Sixth Annual International Conference on Computational Biology. 2002: 263-272.
[9] Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization[J]. Molecular Biology of the Cell, 1998, 9:3273-3297.
[10] Chaitankar V, Ghosh P, Perkins E J, et al. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks[J]. Bioinformatics, 2010, 11(Suppl 6): S19.
[11] Bernard A, Hartemink A J. Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data //Pacific Symposium on Bio-computing, 2005(PSB05). 2005:459-470.
[12] Lee T, Rinaldi N J, Robert F, et al. Transcriptional regulatory networks in Saccharomyces Cerevisiae[J]. Science, 2002, 298:799-804.
[13] Arnone A, Davidson B. The hardwiring of development: organization and function of genomic regulatory systems[J]. Development, 1997, 124: 1851-1864.
[14] Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9:309-347.
[15] Cherry J M. Saccharomyces genome database. Leland Stanford Junior University.(2007-09-15). http://www.yeastgenome.org.
[16] Tan M, AlShalalfa M, Alhajj R, et al. Combining multiple types of biological data in constraint-based learning of gene regulatory networks //Computational Intelligence in Bioinformatics and Computational Biology. Sun Valley Idaho, USA, 2008. |