[1] Klimov A, Shamir A. A new class of invertible mappings //Kaliski B S, et al. Workshop on Cryptographic Hardware and Embeded Systems'2002. Berlin: Springer-Verlag, 2003: 470-483. [2] Klimov A, Shamir A. Cryptographic applications of T-functions // Matsui M, Zuccherato R. Ninth Workshop on Selected Areas in Cryptography-SAC'2003. Berlin: Springer-Verlag, 2004: 248-261. [3] Klimov A, Shamir A. New cryptographic primitives based on multiword T-functions // Roy B, Meier W. Workshop on Fast Software Encryption-FSE'2004. Berlin: Springer-Verlag, 2004: 1-15. [4] Hong J, Lee D H, Yeom Y, et al. A new class of single cycle T-functions // Gilbert H, Handschuh H. Workshop on Fast Software Encryption-FSE'2005. Berlin: Springer-Verlag, 2005: 68-82. [5] Molland H, Helleseth T. A linear weakness in the Klimov-Shamir T-function // Proceedings of the 2005 IEEE Int Symposium on Information Theory. IEEE, 2005: 1106-1110. [6] Kolokotronis N. Cryptographic properties of stream ciphers based on T-functions // Proceedings of the 2006 IEEE Int Symposium on Information Theory. IEEE, 2006: 1604-1608. [7] Zhang W Y, Wu C K. The algebraic normal form, linear complexity and k-error linear complexity of single-cycle T-function // Gong G, et al. Workshop on Sequences and Their Applications-SETA'2006. Berlin: Springer-Verlag, 2006: 391-401. [8] Zhao L, Wen Q Y. Linear complexity and stability of output sequences of single cycle T-function[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(4):62-65(in Chinese). 赵璐,温巧燕. 单圈T-函数输出序列的线性复杂度及稳定性[J]. 北京邮电大学学报,2008,31(4):62-65. [9] Ding C S, Xiao G Z, Shan W J. The stability theory of stream ciphers[M]. Berlin Heidelberg: Springer-Verlag, 1991. [10] Massey J, Costello D, Justesen J. Polynomial weights and code constructions[J]. IEEE Trans IT, 1973, 19(1):101-110. |