[1] Weyl H. Uber beschränkte quadratische Formen, deren Differenz vollstetig ist[J]. Rend Circ Mat Palermo, 1909, 27: 373-392. [2] Djordjevi'c D S. Operators obeying a-Weyl's theorem[J]. Publ Math Debrecen, 1999, 55(3/4): 283-298. [3] Rakoevi D'c V. Semi-Browder operators and perturbations[J]. Studia Math, 1997, 122: 131-137. [4] Gong W B, Han D G. Spectrum of the products of operators and compact perturbations[J]. Proc Amer Math Soc, 1994, 120(3): 755-760. [5] Djordjevi'c D S. Operators consistent in regularity[J]. Publicationes Mathematicae Debrecen, 2002, 60: 1-15. [6] Cao X H, Zhang H J, Zhang Y H. Consistent invertibility and Weyl's theorem[J]. J Math Anal Appl, 2010, 369: 258-264. [7] Saphar P. Contribution a l'etude des applications lineaires dans un espace de Banach[J]. Bull Soc Math France, 1964, 92: 363-384. [8] Kato D. Perturbation theory for linear operator[M]. Springer-Verlag New York Inc, 1966. [9] Schmoeger C. Ein spektralabbidungssatz[J]. Arch Math, 1990, 55: 484-489. [10] Aiena P, Biondi M T. Property (ω) and perturbations[J]. J Math Anal Appl, 2007, 336: 683-692. [11] An I J, Han Y M. Wely's theorem for algebraically quasi-class A operators[J]. Integ Equat Oper Th, 2008, 62: 1-10. [12] Duggal B P, Jeon I H, Kim I H. On Weyl' s theorem for quasi-class A operators[J]. J Korean Math Soc, 2006, 43: 899-909. [13] Laursen K B. Operators with finite ascent[J]. Pacific J Math, 1992, 152: 323-336. [14] Laursen K B, Neumann M M. An introduction to local spectral theory[M]. London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000. |