[1] Feng K. Collected works of Feng Kang (II)[M]. Beijing:National Defence Industry Press, 1995.[2] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003.[3] Feng K, Qin M Z. Symplectic geometric algorithms for Hamiltonian systems[M]. London:Springer, 2010.[4] Channell P J, Scovel C. Symplectic integration of Hamiltonian systems[J]. Nonlinearity, 1990,3:231-259.[5] Ganley W P. Simple pendulum approximation[J]. Am J Phys, 1985,53:73-76.[6] Molina M I. Simple linearizations of the simple pendulum for any amplitude[J]. Phys Teach, 1997,35:489-490.[7] Parwani R R. An approximate expression for the large angle period of a simple pendulum[J]. Eur J Phys,1987,25:37-39.[8] Beléndez A, Hernández A, Beléndez T, et al. An improved 'Heuristic’ approximation for the period of a nonlinear pendulum:linear analysis of a nonlinear problem[J]. Int J Nonlin Sci Numer Simul, 2007,8(3):329-334.[9] Kidd R B, Fogg S L. A simple formula for the large-angle pendulum period[J]. Phys Teach, 2002,40:81-83.[10] Hite G E. Approximations for the period of a simple pendulum[J]. Phys Teach, 2005,43:290-292.[11] Belendez A, Rodes J J, Belendez T, et al. Approximation for a large-angle simple pendulum period[J]. Eur J Phys, 2009,30:L25-28.[12] Turkyilmazoglu M. Improvements in the approximate formulae for the period of the simple pendulum[J]. Eur J Phys, 2010,31:1007-1011.[13] Amore P, Valdovinos M C, Orneles G, et al. The nonlinear pendulum: formulae for the large amplitude period[J]. Rev Mex Fis E, 2007,53:106-111.[14] Lima F M S. Simple log formula for the pendulum motion valid for any amplitude[J]. Eur J Phys, 2008,29:1091-1098.[15] Johannessen K. An approximate solution to the equation of motion for large-angle oscillations of the simple pendulum with initial velocity[J]. Eur J Phys, 2010,31:511-518.[16] Cieslinski J L, Ratkiewicz B. Long-time behaviour of discretizations of the simple pendulum equation[J]. J Phys A: Math Theor, 2009,42:105-204.[17] Carvalhaes C G, Suppes P. Approximations for the period of the simple pendulum based on the arithmetic-geometric mean[J]. Am J Phys, 2008,76:1150-1154.[18] Levenberg K. A method for the solution of certain problems in least squares[J]. Q Appl Math, 1944, 2:164-168.[19] Marquardt D. An algorithm for least-squares estimation of nonlinear parameters[J]. Siam J Appl Math, 1963, 11:431-441. |