[1] Israelachvili J N. Intermolecular and surface forces[M]. 2nd ed. San Diego: Academic Press, 1992: 122-127.[2] Seeman N C. DNA in a material world[J]. Nature, 2003, 421: 427-431.[3] Ulijn R V, Smith A M. Designing peptide based nanomaterials[J]. Chem Soc Rev, 2008, 37: 664-675.[4] Keizer H M, Sijbesma R P. Hierarchical self-assembly of columnar aggregates[J]. Chem Soc Rev, 2005, 34: 226-234.[5] Piot L, Marie C, Feng X, et al. Hierarchical self-assembly of edge-on nanocolumnar superstructures of large disc-like molecules[J]. Adv Mater, 2008, 20: 3854-3858.[6] Yuan C, Zhang X, Su L B, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors[J]. J Mater Chem, 2009, 19: 5772-5777.[7] Liang H, Li Z, Wang W. Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering[J]. Adv Mater, 2009, 21: 4614-4618.[8] Moreau J W, Weber P K, Martin M C, et al. Extracellular proteins limit the dispersal of biogenic nanoparticles[J]. Science, 2007, 316: 1600-1603.[9] Meldrum F C, Colfen H. Controlling mineral morphologies and structures in biological and synthetic systems[J]. Chem Rev, 2008, 108: 4332-4432.[10] Xu A W, Ma Y R, Colfen H. Biomimetic mineralization[J]. J Mater Chem, 2007, 17: 415-449.[11] Yu S H, Colfen H. Bio-inspired crystal morphogenesis by hydrophilic polymers[J]. J Mater Chem, 2004, 14: 2124-2147.[12] Garnweitner G, Niederberger M. Organic chemistry in inorganic nanomaterials synthesis[J]. J Mater Chem, 2008, 18: 1171-1182.[13] Colfen H, Yu S H. Biomimetic mineralization/synthesis of mesoscale order in hybrid inorganic-organic materials via nanoparticle self-assembly[J]. MRS Bull, 2005, 30: 727-735.[14] Yu S H. Bioinspired crystal growth by synthetic templates[J]. Top Curr Chem, 2007, 271: 79-118.[15] Harrison M T, Kershaw S V, Burt M G, et al. Investigation of factors affecting the photoluminescence of colloidally-prepared HgTe nanocrystals[J]. J Mater Chem, 1999, 9: 2721-2723.[16] Taylor N J, Carty A J. Nature of mercury(Ⅱ) ion lcysteine complexes implicated in mercury biochemistry[J]. J Am Chem Soc, 1977, 99: 6143-6145.[17] Jalilehvand F, Leung B O, Izadifard M, et al. Mercury(Ⅱ) cysteine complexes in alkaline aqueous solution[J]. Inorg Chem, 2006, 45: 66-73.[18] Matzapetakis M, Ghosh D, Weng T C, et al. Peptidic models for the binding of Pb(Ⅱ), Bi(Ⅲ) and Cd(Ⅱ) to mononuclear thiolate binding sites[J]. J Biol Inorg Chem, 2006, 11: 876-890.[19] Hoffmeyer R E, Singh S P, Doonan C J, et al. Molecular mimicry in mercury toxicology[J]. Chem Res Toxicol, 2006, 19: 753-759.[20] Giles N M, Watts A B, Giles G I, et al. Metal and redox modulation of cysteine protein function[J]. Chem Biol, 2003, 10: 677-693.[21] Song F Y, Briseno A L, Zhou F M. Redox reactions of and transformation between cysteine-mercury thiolate and cystine in metallothioneins adsorbed at a thin mercury film electrode[J]. Langmuir, 2001, 17: 4081-4089.[22] Maret W, Vallee B L. Thiolate ligands in metallothionein confer redox activity on zinc clusters[J]. Proc Natl Acad Sci USA,1998, 95: 3478-3482.[23] Jiang L J, Maret W, Vallee B L.The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase[J]. Proc Natl Acad Sci USA, 1998, 95: 3483-3488.[24] Anderson D L. Use of L-cysteine for minimization of inorganic Hg loss during thermal neutron irradiation[J]. Radioanal Nucl Chem, 2009, 282: 11-14.[25] Wu L, Song R, Tang Z Y, et al. One-pot synthesis of liquid Hg/solid β-HgS metal-semiconductor heterostructures with unique electrical properties[J]. ACS Nano, 2011, 5: 2224-2230.[26] Li C, Deng K, Tang Z Y, et al. Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks[J]. J Am Chem Soc, 2010, 132: 8202-8209.[27] Tong H, Zhu Y J, Yang L X, et al. Self-assembled ZnS nanostructured spheres: controllable crystal phase and morphology[J]. J Phys Chem C, 2007, 10: 3983-3899.[28] Cheng Y L, Yang S H, Hsu C S. Synthesis of conjugated polymers for organic solar cell applications[J]. Chem Rev, 2009, 11: 5868-5923.[29] Peter L. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell[J]. Acc Chem Res, 2009, 11: 1839-1847. |