[1] Remagnino P, Velastin S A, Foresti G L, et al. Novel concepts and challenges for the next generation of video surveillance systems[J]. Machine Vision and Applications, 2007, 18: 135-137.[2] Morris B T, Trivedi M M. A survey of vision-based trajectory learning and analysis for surveillance[J]. Circuit and Systems for Video Technology, 2008, 18(8): 1114-1127.[3] Piciarelli C, Micheloni C, Foresti G L. Trajectory-based anomalous event detection[J]. Circuits and Systems for Video Technology, 2008, 18(11): 1544-1554.[4] Jung C R, Hennemann L, Musse S R. Event detection using trajectory clustering and 4-D histograms[J]. Circuits and Systems for Video Technology, 2008, 18(11): 1565-1575.[5] Bashir F I, Khokhar A A, Schonfeld D. Object trajectory-based activity classification and recognition using hidden Markov models[J]. Image Processing, 2007, 16(7): 1912-1919.[6] Nascimento J C, Figueiredo M, Marques J S. Trajectory classification using switched dynamical hidden Markov models[J]. Image Processing, 2010, 19(5): 1338-1348.[7] Morris B T, Trivedi M M. Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach[J]. Pattern Analysis and Machine Intelligence, 2011, 33(11): 2287-2301.[8] Morris B T, Trivedi M M. Learning trajectory patterns by clustering: experimental studies and comparative evaluation[J]. Computer Vision and Pattern Recogniton, 2009: 312-319.[9] Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories[J]. Proc IEEE Conf Data Eng, 2002: 673-684.[10] Karypis G, Han E H, Kumar V. Chameleon: a hierarchical clustering algorithm using dynamic modeling[J]. IEEE Computer, 1999, 32(8): 68-75.[11] Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular graphs[J]. Journal of Parallel and Distributed Computing, 1998, 48(1): 96-129. |