[1] Lin C C. The theory of hydrodynamic stability[M]. Cambridge: Cambridge Uni Press, England, 1955: 1-75.[2] Lock R C. The stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field[J]. Proc Roy Soc Lond, 1955, A 233: 1005.[3] Dahlburg R B, Zang T A, Montgomery D, et al. Viscous resistive magnetohydrodynamic stability computed by spectral techniques[J]. Proc Matl Acad Sic USA, 1983, 80:5798-5802.[4] Hu J, Ben Hadid H, Hennry D. Linear stability analysis of Poiseuille-Rayleigh-Benared flow in binary fluid with soret effect[J]. Phys Fluid, 2007, 19:034101-12.[5] Taghavi S M, Khabazi N, Sadeghy K. Hydromagnetic linear instability analysis of Giesekus fluids in plane poiseuille flow[J]. Commun Nonlinear Sic Num Sim, 2009,14:2046-2055.[6] Bühler L. Instability in quasi-two-dimensional magnetohydrodynamic flow[J]. Fluid Mech, 1996, 326: 125-150.[7] Müller U, Bühler L. Magnetofluiddynamics in channels and containers[M]. Berlin: Springer, 2001.[8] Vorobev A, Zikanov O. Instability and transition to turbulence in a free shear layer affected by a parallel magnetic field[J]. Fluid Mech, 2007, 574:131-154.[9] Fakhfakh W, Kaddeche S, Henry D, et al. Selective control of Poiseuille-Rayleigh-Bénard instabilities by a spanwise magnetic field[J]. Phys Fluids,2010, 22:0341031-10.[10] Priede J, Aleksandrova S, Molokov S. Linear stability of Hunts flow[J]. Fluid Mech, 2010, 649:115-134.[11] Orszag S A. Accurate solution of the Orr-Sommerfeld stability equation[J]. Fluid Mech, 1971, 50:689-703.[12] Takashima M. The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field[J]. Fluid Dynamics, 1995, 17:293-310.[13] Hamming R W. Numerical methods for scienentist and engineers[M]. New York: McGraw-Hill, 1962.[14] Fox L, Parker I B. Chebyshev polynomials in numerical analysis[M]. Oxford: Oxford University Press, 1968.[15] Wilkinson J H. The algebraic eigenvalue problem[M]. Oxford: Oxford Univ Press, London, 1965.[16] Gary J, Helgason R. A matrix method for ordinary differential equation[J]. Comp Phys, 1970, 5:159-205.[17] Drazin P G, Reid W H. Hydrodynamic Stability[M]. Cambridge: Cambridge Univ Press, UK, 1981.[18] Watanabe T. Magnetohydrodynamic stability of boundary layers along a flat plate in the presence of a transverse magnetic field[J]. Z Angew Math Mech (ZAMM), 1978, 58:555-560.[19] Marsden J E. Stability and transition on shear flow[M]. New York: Springer-Verlag, 1-555. |