[1] Farquhar G D, Oleary M H, Berry J A. On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9(2):121-137.[2] Martin B, Thorstenson Y R. Stable carbon isotope composition (Delta-C-13), water-use efficiency, and biomass productivity of lycopersicon-esculentum, lycopersicon-pennellii, and the F1-hybrid[J]. Plant Physiology, 1988, 88(1):213-217.[3] Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 2002, 33:507-559.[4] Chen S P, Bai Y F, Han X G. Applications of stable carbon isotope techniques to ecological research[J]. Acta Phytoecologica Sinica, 2002, 26(5):549-560(in Chinese). 陈世苹, 白永飞, 韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26(5):549-560.[5] Ehleringer J R. Variation in leaf carbon-isotope discrimination in encelia-farinosa-implications for growth, competition, and drought survival[J]. Oecologia, 1993, 95(3):340-346.[6] Chen S P, Bai Y F, Lin G H, et al. Variations in life-form composition and foliar carbon isotope discrimination among eight plant communities under different soil moisture conditions in the Xilin River Basin, Inner Mongolia, China[J]. Ecological Research, 2005, 20(2):167-176.[7] Chen S P, Bai Y F, Lin G H, et al. Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China[J]. Journal of Arid Environment, 2007, 71(1):12-28.[8] Mcalpine K G, Jesson L K, Kubien D S. Photosynthesis and water-use efficiency: A comparison between invasive (exotic) and non-invasive (native) species[J]. Austral Ecology, 2008, 33(1):10-19.[9] Querejeta J I, Barea J M, Allen M F, et al. Differential response of delta C-13 and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species[J]. Oecologia, 2003, 135(4):510-515.[10] Schulze E D, Williams R J, Farquhar G D, et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J]. Australian Journal of Plant Physiology, 1998, 25(4):413-425.[11] Corcuera L, Gil-Pelegrin E, Notivol E. Phenotypic plasticity in Pinus pinaster delta C-13: environment modulates genetic variation[J]. Annanls Forest Science, 2010, 67(8):811-812.[12] Yang L M, Han M, Zhou G S, et al. The changes of water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect[J]. Acta Ecologica Sinica, 2007, 27(1):16-24(in Chinese). 杨利民,韩梅,周广胜,等.中国东北样带关键种羊草水分利用效率与气孔密度[J].生态学报,2007,27(1):16-24.[13] Prentice I C, Meng T T, Wang H, et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient[J]. New Phytologist, 2011, 190:169-180.[14] Seibt U, Rajabi A, Griffiths H, et al. Carbon isotopes and water use efficiency: sense and sensitivity[J]. Oecologia, 2008, 155(3):441-454.[15] Chen S P, Bai Y F, Han X G, et al. Variations in foliar carbon isotope composition and adaptive strategies of Carex korshinskyi along a soil moisture gradient[J]. Acta Phytoecologica Sinica, 2004, 28(4):515-522(in Chinese). 陈世苹, 白永飞, 韩兴国, 等. 沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化[J]. 植物生态学报, 2004, 28(4):515-522.[16] Letts M G, Johnson D R E, Coburn C A. Drought stress ecophysiology of shrub and grass functional groups on opposing slope aspects of a temperate grassland valley[J]. Botany-Botanique, 2010, 88(9):850-866.[17] Su B, Han X G, Li L H, et al. Responses of δ13C value and water use effieicency of plant species to environmental gradients along the grassland zone of Northeast China Transect[J]. Acta Phytoecologica Sinica, 2000, 24(6):648-655(in Chinese). 苏波, 韩兴国, 李凌浩, 等.中国东北样带草原区植物 δ13C 值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6):648-655.[18] Wang G A, Han J M. Relations between δ13C values of C-3 plants in Northwestern China and annual precipitation[J]. Chinese Journal of Geology, 2001, 36(4):494-499(in Chinese). 王国安, 韩家懋. 中国西北C-3植物的碳同位素组成与年降雨量关系初探[J]. 地质科学, 2001, 36(4):494-499.[19] Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 2010, 107: 5738-5743.[20] Luo T X, Zhang L, Zhu H Z, et al. Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect[J]. Ecography, 2009, 32: 526-538.[21] Corcuera L, Gil-Pelegrin E, Notivol E. Phenotypic plasticity in Pinus pinaster δ13C: environment modulates genetic variation[J]. Annals of Forest Science, 2010, 67.[22] Kohorn L U, Goldstein G, Rundel P W. Morphological and isotopic indicators of growth environment: variability in δ13C in Simmondsia chinensis, a dioecious desert shrub[J]. Journal of Experimental Botany, 1994, 45: 1817-1822.[23] Lauteri M, Pliura A, Monteverdi M C, et al. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities[J]. Journal of Evolutionary Biology, 2004, 17: 1286-1296.[24] Li B, Yong S P, Li Y. The grassland of China[M]. Beijing: Science Press, 1990.[25] Falster D S W D, Wright I J. SMATR: Standardised major axis tests and routines[D]. (2006). http://www.bio.mq.edu.au/ecology/SMATR/.[26] Chen S P, Bai Y F, Lin G H, et al. Variations in δ13C values among major plant community types in the Xilin River Basin, Inner Mongolia, China[J]. Australian Journal of Botany, 2007, 55(1):48.[27] Ehleringer J R, Cooper T A. Correlations between carbon isotope ratio and microhabitat in desert plants[J]. Oecologia, 1988, 76(4):562-566.[28] Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences, 2010, 107(46):19691-19695.[29] Ren S J, Yu G R. Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China[J]. Chinese Journal of Plant Ecology, 2011, 35 (2): 119-124(in Chinese). 任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报, 2011, 35 (2): 119-124.[30] Diefendorf A F, Mueller K E, Wing S. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 2010, 107(13):5738-5743. |