[1] Lidl R, Niederreiter H, Chon P M. Finite fields[M]. London: Cambridge University Press, 1997.[2] Katz J, Lindell Y. Introduction to modern cryptography[M]. Boca Raton: CRC PRESS, 2007.[3] Wang H Z, Zhang H G, Guan H M, et al. Multivariable algebra theory and its application in cryptography[J]. Journal of Beijing University of Technology, 2010, 36(5): 627-634(in Chinese). 王后珍, 张焕国, 管海明,等. 多变量代数理论及其在密码学中的应用[J]. 北京工业大学学报, 2010, 36(5): 627-634.[4] Aubry P, Lazard D, Moreno Maza M. On the theories of triangular sets[J]. Journal of Symbolic Computation, 1999, 28: 105-124.[5] Aubry P, Moreno Maza M. Triangular sets for solving polynomial systems: a comparative implementation of four methods[J]. Journal of Symbolic Computation, 1999, 28: 125-154.[6] Wu W T. Basic principles of mechanical theorem-proving in elementary geometries[J]. Journal of Automated Reasoning, 1986, 2(3): 221-252.[7] Wu W T. On zeros of algebraic equations: an application of Ritt principle[J]. Kexue Tongbao, 1986, 31(1): 1-5.[8] Lazard D. A new method for solving algebraic systems of positive dimension[J]. Discrete Applied Mathematics, 1991, 33(1-3): 147-160.[9] Li B. An algorithm to decompose a polynomial ascending set into irreducible ones[J]. Acta Analysis Functionalis Applicata, 2005, 7(2): 97-105.[10] Dahan X,Moreno Maza M,Schost E, et al. Lifting techniques for triangular decompositions[C]//Proc ISSAC'05. New York: ACM Press, 2005: 108-115.[11] Lin D D, Liu Z J. Some results on theorem proving in geometry over finite fields[C]//Proc ISSAC'93. New York: ACM Press, 1993: 292-300.[12] Gao X S, Chai F, Yuan C. A characteristic set method for solving boolean equations and applications in cryptanalysis of stream ciphers[J]. Journal of Systems Science and Complexity, 2008, 21(2): 191-208.[13] Gao X S, Huang Z. A characteristic set method for equation solving in finite fields[J]. Journal of Symbolic Computation, 2012, 47(6): 655-679.[14] Li X L, Mou C Q, Wang D M. Decomposing polynomial sets into simple sets over finite fields: the zero-dimensional case[J]. Computers and Mathematics with Applications,2010, 60(11): 2 983-2 997.[15] Mou C Q, Wang D M, Li X L. Decomposing polynomial sets into simple sets over finite fields: the positive-dimensional case[J]. Theoretical Computing Science, 2013, 468: 102-113.[16] Bardet M, Faugère J C, Salvy B. Complexity of Grebner basis computation for semi-regular overdetermined sequences over F2 with solutions in F2, INRIA report RR-5049[R]. 2003.[17] Brickenstein M, Dreyer A. PolyBoRi: a freamwork for Grbner basis computations with boolean polynomials[J]. Journal of Symbolic Computation, 2009, 44(9): 1 326-1 345.[18] Faugère J C. A new efficient algorithm for computing Grebner bases(F4)[J]. Journal of Pure and Applied Algebra, 1999, 139(1-3): 61-88.[19] Faugère J C. A new efficient algorithm for ccomputing Grebner bases without reduction to zero(F5)[C]//Proc ISSAC'02. NewYork: ACM Press, 2002: 75-83.[20] Courtois N, Klimov A, Patarin J, et al. Efficient algorithms for solving overdetermined systerms of multivariate polynomial equations[C]//Proc EUROCRYPT'00. Verlag Berlin, Heidelberg: Springer, 2000: 392-407.[21] Kapur D, Wan H K. Refutational proofs of geometry theorems via characteristic set computation[C]//Proc ISSAC'90. New York: ACM Press, 1990: 277-284.[22] Wang D M. An elimination method for polynomial systems[J]. Symbolic Computation, 1993, 16(2): 83-114. |