[1] Lautens M, Klute W, Tam, W. Transition metal-mediated cycloaddition reactions[J]. Chem Rev, 1996, 96(1): 49-92.
[2] Rubin M, Rubina M, Gevorgyan V. Transition metal chemistry of cyclopropenes and cyclopropanes[J]. Chem Rev, 2007, 107(7): 3 117-3 179.
[3] Yeung C S, Dong V M. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds[J]. Chem Rev, 2011, 111(3): 1 215-1 292.
[4] Wencel D J, Glorius F. C—H bond activation enables the rapid construction and late-stage diversification of functional molecules[J]. Nat Chem, 2013, 5: 369-375.
[5] Colby D A, Bergman R G, Ellman J A. Rhodium-catalyzed C—C bond formation via heteroatom-directed C—H bond activation[J]. Chem Rev, 2010, 110(2): 624-655.
[6] Guimond N, Gouliaras C, Fagnou K. Rhodium(III)-catalyzed isoquinolone synthesis: the N—O bond as a handle for C—N bond formation and catalyst turnover[J]. J Am Chem Soc, 2010, 132(20): 6 908-6 909.
[7] Ackermann L, Lygin A V, Hofmann N. Ruthenium-catalyzed oxidative annulation by cleavage of C—H/N—H bonds[J]. Angew Chem Int Ed, 2011, 50(28): 6 379-6 382.
[8] Nan J, Zuo Z, Luo L, et al. RuII-catalyzed vinylative dearomatization of naphthols via a C(sp2)—H bond activation approach[J]. J Am Chem Soc, 2013, 135(46): 17 306-17 309.
[9] Mehta V P, García J A, Greaney M F. Aromatic homologation by non-chelate-assisted RhIII-catalyzed C—H functionalization of arenes with alkynes[J]. Angew Chem, Int Ed, 2014, 53(6): 1 529-1 533.
[10] Stuart D R, Bertrand L M, Burgess K M N, et al. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes[J]. J Am Chem Soc, 2008, 130(49): 16 474-16 475.
[11] Rakshit S, Patureau F W, Glorius F. Pyrrole synthesis via allylic sp3 C—H activation of enamines followed by intermolecular coupling with unactivated alkynes[J]. J Am Chem Soc, 2010, 132(28): 9 585-9 587.
[12] Neely J M, Rovis T. Rh(III)-catalyzed regioselective synthesis of pyridines from alkenes and α,β-unsaturated oxime esters[J]. J Am Chem Soc, 2013, 135(1): 66-69.
[13] Dooley J D, Reddy C S, Lam H W. Catalyst-controlled divergent C—H functionalization of unsymmetrical 2-aryl cyclic 1,3-dicarbonyl compounds with alkynes and alkenes[J]. J Am Chem Soc, 2013, 135(29): 10 829-10 836.
[14] Cui S, Zhang Y, Wu Q. Rh(III)-catalyzed C—H activation/cycloaddition of benzamides and methylenecyclopropanes: divergence in ring formation[J]. Chem Sci, 2013, 4(9): 3 421-3 426.
[15] Zhou M B, Song R J, Wang C Y, et al. Synthesis of azepine derivatives by silver-catalyzed cycloaddition of g-amino ketones with alkynes[J]. Angew Chem Int Ed, 2013, 52(41): 10 805-10 808.
[16] Seoane A, Casanova N, Quiñones N, et al. Straightforward assembly of benzoxepines by means of a rhodium(III)-catalyzed C—H functionalization of o-vinylphenols[J]. J Am Chem Soc, 2014, 136(3): 834-837.
[17] Seoane A, Casanova N, Quiñones N, et al. Rhodium(III)-catalyzed dearomatizing (3 + 2) annulation of 2-alkenylphenols and alkynes[J]. J Am Chem Soc, 2014, 136(21): 7 607-7 610.
[18] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5 648-5 652.
[19] Roy L E, Hay P J, Martin R L. Revised basis sets for the LANL effective core potentials[J]. J Chem Theory Comput, 2008, 4(7): 1 029-1 031.
[20] Dang Y F, Qu S L, Wang Z X, et al. Mechanism and origins of Z selectivity of the catalytic hydroalkoxylation of alkynes via rhodium vinylidene complexes to produce enol ethers[J].Organometallics, 2013, 32(9): 2 804-2 813.
[21] Dang Y F, Qu, S L, Wang Z X, et al. A computational mechanistic study of an unprecedented heck-type relay reaction:insight into the origins of regio- and enantioselect-ivities[J]. J Am Chem Soc, 2014, 136(3): 986-998.
[22] Qu S L, Dang Y F, Wen M W, et al. Mechanism of the methyltrioxorhenium-catalyzed deoxydehydration of polyols:a new pathway revealed[J]. Chem Eur J, 2013, 19(12): 3 827-3 832.
[23] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 . Gaussian, Inc.: Wallingford, CT, 2009.
[24] Xu L, Zhu Q, Huang G, et al. Computational elucidation of the internal oxidant-controlled reaction pathways in Rh(III)-catalyzed aromatic C—H functionalization[J]. J Org Chem, 2011, 76(9): 3 523-3 526.
[25] Lapointe D, Fagnou K. Overview of the mechanistic work on the concerted metallation-deprotonation pathway[J]. Chem Lett, 2010, 39(11): 1 118-1 126.
[26] Liu L, Wu Y, Wang T, et al. Mechanism, reactivity, and selectivity in Rh(III)-catalyzed phosphoryl-directed oxidative C—H activation/cyclization:a DFT study[J]. J Org Chem, 2014, 79(11): 5 074-5 081.
[27] Quinones N, Seoane A, arcia-Fandino R, et al. Rhodium(III)-catalyzed intramolecular annulations involving amide-directed C—H activations: synthetic scope and mechanistic studies[J]. Chem Sci, 2013, 4(7): 2 874-2 879.
[28] Hosokawa T, Murahashi S. New aspects of oxypalladation of alkenes[J]. Acc Chem Res, 1990, 23(2): 49-54. |