[1] Jaswon M A. Integral equation methods in potential theory, Part 1 [J]. Proceedings of the Royal Society of London Series A, 1963, 275: 23-32.
[2] Symm G T. Integral equation methods in potential theory, Part 2 [J]. Proceedings of Royal Society of London Series A, 1963, 275: 33-46.
[3] Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics [J]. Quarterly of Applied Mathematics, 1967, 25: 83-95.
[4] Cruse T A, Rizzo F J. A direct formulation and numerical solution of the general transient elastodynamic problem, part 1 [J]. Journal of Mathematical Analysis and Applications, 1968, 22(1): 244-259.
[5] Cruse T A, Rizzo F J. A direct formulation and numerical solution of the general transient elastodynamic problem, Part 2 [J]. Journal of Mathematical Analysis and Applications, 1968, 22(2): 341-355.
[6] Brebbia C A. The boundary element method for engineers [M]. London: Pentech Press, 1978: 189.
[7] Pozrikidis C. A practical guide to boundary element methods with the software library BEMLIB [M]. Boca Raton: CRC Press, 2002: 440.
[8] Rjasanow S, Steinbach O. The fast solution of boundary integral equations [M]. New York: Springer US, 2007: 284.
[9] Liu Y. Fast multipole boundary element method-Theory and applications in engineering [M]. Cambridge: Cambridge University Press, 2009: 254.
[10] Li Z H, Ribe N M. Dynamics of free subduction from 3-D boundary-element modeling [J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B06408.
[11] Li Z H, Di Leo J F, Ribe N M. Subduction-induced mantle flow, finite strain and seismic anisotropy: Numerical modeling [J]. Journal of Geophysical Research: Solid Earth, 2014, 119: 5052-5076.
[12] Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow [M]. New York: Cambridge University Press, 1992: 259.
[13] Blake J R. A note on the image system for a stokeslet in a no-slip boundary [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1971, 70: 303-310.
[14] Ascoli E P, Dandy D S, Leal L G. Buoyancy-driven motion of a deformable drop toward a planar wall at low Reynolds number [J]. Journal of Fluid Mechanics, 1990, 213: 287-311.
[15] Liron N, Mochon S. Stokes flow for a stokeslet between two parallel flat plates [J]. Journal of Engineering Mathematics, 1976, 10: 287-303.
[16] Pozrikidis C. The deformation of a liquid drop moving normal to a plane wall [J]. Journal of Fluid Mechanics, 1990, 215: 331-363.
[17] Manga M, Stone H A. Buoyancy-driven interaction between two deformable viscous drops [J]. Journal of Fluid Mechanics, 1993, 256: 647-683.
[18] Fraysse V, Giraud L, Gratton S, et al. A set of GMRES routines for real and complex arithmetics on high performance computers . CERFACS Technical Report TR/PA/03/3, 2001: 20.
[19] Batchelor G K. An introduction to fluid dynamics [M]. New York: Cambridge University Press, 1967: 615.
[20] Brenner H. The slow motion of a sphere through a viscous fluid towards a plane surface [J]. Chemical Engineering Science, 1961, 16: 242-251. |