[1] Liu H, Yang X, Liu C. A new wide neighborhood primal-dual infeasible-interior-point method for symmetric cone programming[J]. Journal of Optimization Theory and Applications, 2013, 158(3):796-815.
[2] Rangarajan B K. Polynomial convergence of infeasible-interior-point methods over symmetric cones[J]. Siam Journal on Optimization, 2006, 16(4):1 211-1 229.
[3] Andersen E D, Ye Y. On a homogeneous algorithm for the monotone complementarity problem[J]. Mathematical Programming, 1995, 84(2): 375-399.
[4] Cottle R W, Pang J S, Stone R E. The linear complementarity problem[J]. Computer Science and Scientific Computing, 1992, 1: 132-133.
[5] Güler O. Existence of interior points and interior paths in nonlinear monotone complementarity problems[J]. Mathematics of Operations Research, 1993, 18(1):128-147.
[6] Kojima M, Mizuno S, Yoshise A. A convex property of monotone complementarity problems . Department of Information Sciences, Tokyo Institute of Technology, Tokyo, Japan:1993.
[7] 韩继业, 修乃华, 戚厚铎. 非线性互补理论与算法[M]. 上海:上海科学技术出版社, 2006.
[8] Klerk E. Aspects of semidefinite programming[M]. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers, 2004.
[9] Zhang Y. On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming[J]. Siam Journal on Optimization, 1998, 8(2):365-386.
[10] Shida M, Shindoh S, Kojima M. Existence and uniqueness of search directions in interior-point algorithms for the SDP and the monotone SDLCP[J]. Siam Journal on Optimization, 1998, 8(2): 387-396.
[11] Ai W, Zhang S. An O( n L) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP[J]. Siam Journal on Optimization, 2005, 16(2): 400-417.
[12] Li Y, Terlaky T. A new class of large neighborhood path-following interior point algorithms for semidefinite optimization with O n log Tr(X0S0) ε iteration complexity[J]. Siam Journal on Optimization, 2010, 20(6):2 853-2 875.
[13] 刘新泽. 对称锥互补问题若干内点算法的复杂性研究 . 西安: 西安电子科技大学, 2014.
[14] Jin S, Ariyawansa K A, Zhu Y. Homogeneous self-dual algorithms for stochastic semidefinite programming[J]. Journal of Optimization Theory and Applications, 2012, 155(3):1 073-1 083.
[15] 杨喜美. 对称锥规划的宽邻域内点算法研究 . 西安: 西安电子科技大学, 2014.
[16] 刘长河. 锥规划中若干内点算法的复杂性研究 .西安: 西安电子科技大学, 2012.
[17] Todd M J, Toh K C, T R H. On the Nesterov-Todd direction in semidefinite programming[J]. Siam Journal on Optimization, 1997, 8(3):769-796. |