[1] Nagai K. New developments in the production of methyl methacrylate[J]. Applied Catalysis A:General, 2001, 221(1/2):367-377.
[2] Nagai K, Ui T. Trends and future of monomer-MMA technologies[J]. Sumitomo Chemicals, 2004, 2:4-13.
[3] 智研资讯集团.2010-2015年中国甲基丙烯酸甲酯(MMA)市场运行态势与投资战略咨询报告.北京:智研资讯集团,2015:17-22.
[4] Böhnke H, Gaube J, Petzoldt J. Selective oxidation of methacrolein towards aethacrylic acid on mixed oxide (Mo, V, W) catalysts. Part 1. Studies on kinetics[J]. Industrial & Engineering Chemistry Research, 2006, 45(26):8801-8806.
[5] Kanno M, Yasukawa T, Ninomiya W, et al. Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings[J]. Journal of Catalysis, 2010, 273(1):1-8.
[6] Langpape M, Millet J-M M. Effect of iron counter-ions on the redox properties of the Keggin-type molybdophosphoric heteropolyacid:Part I. An experimental study on isobutane oxidation catalysts[J]. Applied Catalysis A:General, 2000, 200(1/2):89-101.
[7] 丁爽. 丙酸甲酯与甲醛缩合催化剂的制备及性能研究.大连:大连工业大学, 2012.
[8] 赖崇伟,李洁,熊国炎,等. 丙酸甲酯和甲醛合成甲基丙烯酸甲酯的Cs-SiO2催化剂的研究[J]. 天然气化工, 2014, 39(6):1-4.
[9] 李斌. 丙酸甲酯与甲醛缩合反应制备甲基丙烯酸甲酯.北京:中国科学院大学, 2014.
[10] Ai M. Reaction of methyl propionate with methylal over V-Si-P ternary oxide catalysts[J]. Bulletin of the Chemical Society of Japan, 1990, 63(12):3722-3724.
[11] Li B, Yan R Y, Wang L, et al. Synthesis of methyl methacrylate by aldol condensation of methyl propionate with formaldehyde over acid-base bifunctional catalysts[J]. Catalysis Letter, 2013, 143(8):829-838.
[12] Suzuki K, Kiyozumi Y, Matsuzaki K, et al. Effect of crystallization time on the physicochemical and catalytic properties of a ZSM-5 type zeolite[J]. Applied Catalysis, 1988, 42(1):35-45.
[13] Xu L, Ma Y, Ding W, et al. Effect of crystallization time on the physico-chemical and catalytic properties of the hierarchical porous materials[J]. Materials Research Bulletin, 2010, 45(9):1293-1298.
[14] Li B, Yan R, Wang L, et al. SBA-15 supported cesium catalyst for methyl methacrylate synthesis via condensation of methyl propionate with formaldehyde[J]. Industrial & Engineering Chemistry Research, 2014, 53(4):1386-1394.
[15] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350):548-552.
[16] Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. Journal of the American Chemical Society, 1998, 120(24):6024-6036.
[17] Gogate M R, Spivey J J, Zoeller J R. Synthesis of methyl methacrylate by vapor phase condensation of formaldehyde with propionate derivatives[J]. Catalysis Today, 1997, 36(3):243-254.
[18] Chen H, Xue M, Hu S, et al. The effect of surface acidic and basic properties on the hydrogenation of lauronitrile over the supported nickel catalysts[J]. Chemical Engineering Journal, 2012, 181/182(2):677-684.
[19] Hu S, Xue M, Chen H, et al. The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts[J]. Chemical Engineering Journal, 2010, 162(1):371-379.
[20] Meloni D, Sini M F, Cutrufello M G, et al. Acid-base features of ex-hydrotalcites Mg-containing and Mg-free mixed oxides[J]. Journal of Thermal Analysis and Calorimetry, 2013, 112(1):489-498.
[21] 刘旗,李奕怀,燕溪溪,等. 晶化时间对SAPO-34分子筛合成及性能的影响[J].上海第二工业大学学报, 2015, 32(2):114-119.
[22] 史忠华,刘华,陈耀强,等. 耐高温高比表面积载体对密偶催化剂性能的影响[J].石油化工, 2004, 33(z1):1393-1394.
[23] 毕玉水,赵晓红.不同载体负载的Pd催化剂上的CO氧化性能比较[J].稀有金属材料工程, 2009, 38(5):870-875.
[24] 于兹灜."吸附增进法"在甲烷水蒸汽重整、水煤气变换制氢工艺中的应用.金华:浙江师范大学, 2010.
[25] 李应成,闫世润,杨为民,等.载体比表面积及孔径对Nb2O5/α-Al2O3催化剂酸性及反应性能的影响[J].石油化工, 2006, 35(3):221-225. |