[1] Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248(4 960): 1 217-1 219.
[2] Beauchemin K A, Kreuzer M, O'Mara F, et al. Nutritional management for enteric methane abatement: a review[J]. Australian Journal of Experimental Agriculture, 2008, 48(2): 21-27.
[3] 冯仰廉, 李胜利, 赵广永,等. 牛甲烷排放量的估测[J].动物营养学报, 2012, 24(1): 1-7.
[4] Johnson K A, Johnson D E. Methane emissions from cattle[J]. Journal of Animal Science, 1995, 73(8): 2 483-2 492.
[5] Qiu Q, Zhang G, Ma T, et al. The yak genome and adaptation to life at high altitude[J]. Nature Genetics, 2012, 44(8): 946-949.
[6] Xue B, Wang L Z, Yan T. Methane emission inventories for enteric fermentation and manure management of yak, buffalo and dairy and beef cattle in China from 1988 to 2009[J]. Agriculture Ecosystems & Environment, 2014, 195: 202-210.
[7] 边俊艳. 我国牛的个体特征差异性及其对甲烷排放季节与空间变化影响分析[D].武汉:湖北大学, 2014.
[8] 杨博. 青藏高原冬季放牧牦牛甲烷排放的初步研究[D].兰州:甘肃农业大学, 2009.
[9] 达珍, 次仁卓玛. 体外法测定青藏高原冬季草场放牧牦牛甲烷排放量[J].西藏科技, 2013(11): 65-67.
[10] 王成杰, 汪诗平, 周禾. 放牧家畜甲烷气体排放量测定方法研究进展[J].草业学报, 2006, 15(1): 113-116.
[11] 李恩凯, 杨在宾. 反刍动物甲烷的产生、测定及减排调控的研究[J].中国草食动物科学, 2014(5): 64-68.
[12] Hu E, Babcock E L, Bialkowski S E, et al. Methods and techniques for measuring gas emissions from agricultural and animal feeding operations[J]. Critical Reviews in Analytical Chemistry, 2014, 44(3): 200-219.
[13] Bhatta R, Enishi O, Kurihara M. Measurement of methane production from ruminants[J]. Asian-Australasian Journal of Animal Sciences, 2007, 20(8): 1 305-1 318.
[14] Harper L A, Denmead O T, Flesch T K. Micrometeorological techniques for measurement of enteric greenhouse gas emissions [J]. Animal Feed Science and Technology, 2011, 166 (7): 227-239.
[15] Brou?ek, J. Methods of methane measurement in ruminants introduction[J]. Slovak Journal of Animal Science, 2014, 47(1): 51-60.
[16] Sejian V, Lal R, Lakritz J, et al. Measurement and prediction of enteric methane emission[J]. International Journal of Biometeorology, 2011, 55(1): 1-16.
[17] 徐田伟, 胡林勇, 葛世栋,等.青藏高原高寒牧区冷季补饲藏系绵羊温室气体排放特征[J].农业环境科学学报, 2014(10): 2 071-2 076.
[18] Wang C, Wang S, Zhou H, et al. Effects of forage composition and growing season on methane emission from sheep in the Inner Mongolia steppe of China[J]. Ecological Research, 2007, 22(1): 41-48.
[19] Sasaki N, Hobo S, Yoshihara T. Measurement for breath concentration of hydrogen and methane in horses[J]. Journal of Veterinary Medical Science, 1999, 61(9): 1 059-1 062.
[20] Lin S X, Wei C, Zhao G Y, et al. Effects of supplementing rare earth element cerium on rumen fermentation, nutrient digestibility, nitrogen balance and plasma biochemical parameters in beef cattle[J]. Journal of Animal Physiology & Animal Nutrition, 2015, 99(6): 1 047-1 055.
[21] 邹小艳, 罗彩云, 徐世晓,等.不同种牧草的产量和品质[J].草地学报, 2015, 23(5): 1 064-1 067.
[22] 覃春富, 张佩华, 张继红,等.畜牧业温室气体排放机制及其减排研究进展[J].中国畜牧兽医, 2011, 38(11): 209-214.
[23] Deramus H A, Clement T C, Giampola D D, et al. Methane emissions of beef cattle on forages: efficiency of grazing management systems[J]. Journal of Environmental Quality, 2003, 32(1): 269-277.
[24] Molano G, Clark H, Knight T W, et al. Methane emissions from growing beef cattle grazing hill country pasture[J]. Proceedings of the New Zealand Society of Animal Production, 2006, 66: 172-175.
[25] Jiao H, Yan T, Wills D A, et al. Development of prediction models for quantification of total methane emission from enteric fermentation of young Holstein cattle at various ages[J]. Agriculture Ecosystems & Environment, 2014, 183(183): 160-166.
[26] Grandl F, Amelchanka S L, Furger M, et al. Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age[J]. Journal of Dairy Science, 2016, 99(5): 3 472-3 485.
[27] Ulyatt M J, Lassey K R, Shelton I D, et al. Methane emission from sheep grazing four pastures in late summer in New Zealand[J]. New Zealand Journal of Agricultural Research, 2005, 48(4): 385-390.
[28] Swainson N M, Hoskin S O, Clark H, et al. The effect of age on methane emissions from young, weaned red deer (Cervus elaphus) stags grazing perennial-ryegrass (Lolium perenne)-based pasture[J]. New Zealand Journal of Agricultural Research, 2007, 50(9): 407-416.
[29] 王小林. 奶牛不同生理阶段甲烷排放规律研究及热应激对犊牛甲烷排放量的影响[D].乌鲁木齐: 新疆农业大学, 2012.
[30] 颜志成, 谢天宇, 王荣,等. 冬春两季奶牛胃肠道甲烷排放量变化的研究[J].湖南农业科学, 2015(2): 50-54.
[31] 薛白, 赵新全, 张耀生. 青藏高原天然草场放牧家畜的采食量动态研究[J].家畜生态学报, 2004, 25(4):21-25.
[32] Richmond A S, Wylie A R, Laidlaw A S, et al. Methane emissions from beef cattle grazing on semi-natural upland and improved lowland grasslands[J]. Animal, 2014, 9(1): 1-8.
[33] Hegarty R S, Goopy J P, Herd R M, et al. Cattle selected for lower residual feed intake have reduced daily methane production[J]. Journal of Animal Science, 2007, 85(6):1 479-1 486.
[34] Blaxter K L, Clapperton J L. Prediction of the amount of methane produced by ruminants[J]. British Journal of Nutrition, 1965, 19(4):511-522.
[35] 赵一广. 肉用绵羊甲烷排放的测定与估测模型的建立[D].北京:中国农业科学院, 2012.
[36] 孙斌, 龚飞飞, 邵伟,等. 泌乳牛甲烷24小时排放及排放量变化的研究[J].中国畜牧兽医文摘, 2013(3):28-31.
[37] Kennedy B P M, Milligan L P. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformation in sheep[J]. Biochemical Journal, 2010, 206(2):287-293.
[38] 于子洋, 王鑫, 林英庭. 大蒜素对动物血清生化指标的影响[J].粮食与饲料工业, 2013(9):53-56.
[39] 东北农学院. 兽医临床诊断学[M]. 北京: 农业出版社,1980.
[40] 冯志华. 蒺藜皂苷对奶牛瘤胃发酵、甲烷产量、抗氧化功能及免疫功能的影响[D]. 保定: 河北农业大学, 2013.
[41] 赵丽萍. 硝酸盐对肉牛瘤胃发酵、微生物多样性、血液生化及抗氧化性能的影响[D].北京: 中国农业大学, 2015.
[42] 赵中权, 何晶晶, 李周权,等. 大足黑山羊生理生化指标测定[J].畜牧与兽医, 2011, 43(2):60-62.
[43] 党万花, 李生芳, 赵青山. 含野血牦牛与家牦牛7项生化指标的比较[J].黑龙江畜牧兽医, 2014(18): 121-122.
[44] 圈华, 李莉. 青藏高原不同生长期牦牛15项指标的测定[J].动物医学进展, 2011, 32(8): 62-65.
[45] Ding X Z, Long R J, Kreuzer M, et al. Methane emissions from yak (Bos grunniens) steers grazing or kept indoors and fed diets with varying forage:concentrate ratio during the cold season on the Qinghai-Tibetan Plateau[J]. Fuel & Energy Abstracts, 2011, 162(3): 91-98.
[46] Shao B, Long R, Ding Y, et al. Morphological adaptations of yak (Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau[J]. Journal of Animal Science, 2010, 88(8): 2 594-2 603.
[47] Christopherson R J. Effects of prolonged cold and the outdoor winter environment on apparent digestibility in sheep and cattle[J]. Canadian Veterinary Journal La Revue Veterinaire Canadienne, 1976, 56(2): 201-212.
[48] Kennedy P M, Milligan L P. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep[J]. British Journal of Nutrition, 1978, 39(1): 105-117.
[49] Pinares-Patiño C S, Franco F E, Molano G, et al. Feed intake and methane emissions from cattle grazing pasture sprayed with canola oil[J]. Livestock Science, 2015, 184: 7-12.
[50] Hammond K J, Humphries D J, Crompton L A, et al. Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer[J]. Animal Feed Science & Technology, 2015, 203: 41-52.
[51] Tomkins N W, McGinn S M, Turner D A, et al. Comparison of open-circuit respiration chambers with a micrometeorological method for determining methane emissions from beef cattle grazing a tropical pasture[J]. Animal Feed Science & Technology, 2011, 166(7): 240-247.
[52] Mcginn S M, Turner D, Tomkins N, et al. Methane emissions from grazing cattle using point-source dispersion [J]. Journal of Environmental Quality, 2010, 40(1): 22-27.
[53] Foley P A, Kenny D A, Callan J J, et al. Effect of DL-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle[J]. Journal of Animal Science, 2009, 87(3): 1 048-1 057.
[54] Jones F M, Phillips F A, Naylor T, et al. Methane emissions from grazing Angus beef cows selected for divergent residual feed intake[J]. Animal Feed Science & Technology, 2011, 166 (7):302-307.
[55] Grainger C, Clarke T, Beauchemin K A, et al. Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet[J]. Australian Journal of Experimental Agriculture, 2008, 48(2): 73-76. |