[1] Gunderson C A, O'Hara K H, Campion C M, et al. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate [J]. Global Change Biology, 2010, 16: 2 272-2 286.
[2] Song W M, Chen S P, Wu B, et al. Vegetation cover and rain timing co-regulate the responses of soil CO2 efflux to rain increase in an arid desert ecosystem [J]. Soil Biology & Biochemistry, 2012, 49: 114-123.
[3] Song W M, Chen S P, Zhou Y D, et al. Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios[J]. Scientific Reports, 2015, 5(12):1 436-1 438.
[4] Wohlfahrt G, Fenstermaker L F, Arnone J A. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem [J]. Global Change Biology, 2008, 14: 1 475-1 487.
[5] Xie J X, Li Y, Zhai C X, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle [J]. Environmental Geology, 2009, 56: 953-961.
[6] 程磊磊,郭浩,吴波,等. 荒漠生态系统功能及服务的评估体系与方法[J]. 绿洲农业科学与工程,2016, 2(1):12-18.
[7] Parick L D, Ogle K, Bell C W, et al. Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics [J]. Global Change Biology, 2009, 15:1 214-1 229.
[8] Pachauri R K, Meyer L A. Climate change 2014: synthesis report. Contribution of Working Groups I, Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change [R]. Geneva, Switzerland: IPCC, 2014.
[9] Yan L M, Chen S P, Huang J H, et al. Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe [J]. Global Change Biology, 2011, 17: 1 990-2 001.
[10] 朱雅娟,贾子毅,吴波,等. 模拟增雨对荒漠灌木白刺枝叶生长的促进作用[J]. 林业科学研究, 2012, 25(5): 626-631.
[11] 张金鑫,卢琦,吴波,等. 白刺枝叶生长对人工模拟降雨的响应[J]. 林业科学研究, 2012, 25(2): 130-137.
[12] 何季, 吴波, 鲍芳,等. 人工模拟增雨对乌兰布和沙漠白刺生物量分配的影响[J]. 林业科学, 2016, 52(5):81-91.
[13] 任昱,卢琦,吴波,等. 白刺叶片气孔特征对人工模拟降雨的响应[J].生态学报, 2014, 34(21):6 101-6 106.
[14] 任昱,吴波,卢琦,等. 荒漠植物白刺叶片气孔性状对模拟增雨的响应[J].林业科学研究, 2015, 28(6): 865-870.
[15] 何季,吴波,鲍芳,等. 荒漠植物白刺对模拟增雨的光合响应机制[J]. 林业科学, 2015, 51(6): 27-35.
[16] 何季,吴波,贾子毅,等. 白刺光合生理特性对人工模拟增雨的响应[J]. 林业科学研究, 2013, 26(1): 58-64.
[17] 张赐成,韩广,关华德,等. 樟树和桂花树光合最适温度对环境温度改变的响应[J]. 生态学杂志, 2014, 33(11): 2 980-2 987.
[18] Zhang J X, Gu L H, Bao F, et al. Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape building desert plant species [J]. Biogeosciences, 2015, 12: 15-27.
[19] Llorens L, Peñuelas J, Beier C, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two Ericaceous shrub species along a north-south European gradient [J]. Ecosystems, 2004, 7: 613-624.
[20] Li Y G, Jiang G M, Liu M Z, et al. Photosynthetic response to precipitation/rainfall in predominant tree (Ulmus pumila) seedlings in Hunshandak Sand land, China [J]. Photosynthetica, 2007, 45 (1): 133-138.
[21] Haase P, Pugnaire F I, Clark S C, et al. Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima [J]. Plant Ecology, 1999, 145: 327-339.
[22] Seghieri J, Carreau J, Boulain N, et al. Is water availability really the main environmental factor controlling the phenology of woody vegetation in the central Sahel [J]. Plant Ecology, 2012, 213: 861-870.
[23] Yamori W, Noguchi K, Terashima I. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions [J]. Plant, Cell and Environment, 2005, 28:536-547.
[24] Mooney H A, Björkman O, Collatz G J. Photosynthetic acclimation to temperature in desert shrub, Larrea divaricata: I. Carbondioxide exchange characteristics of intact leaves [J]. Plant Physiology, 1978, 61: 406-410.
[25] Armond P A, Schreiber U, Björkman O. Photosynthetic acclimation to temperature in desert shrub, Larrea divaricata: Ⅱ. Light harvesting efficiency and electron transport [J]. Plant Physiology, 1978, 61: 411-415.
[26] Xiong F S, Mueller E C, Day T A. Photosynthetic and respiratory acclimation and growth responses of Antarctic vascular plants to contrasting temperature regimes [J]. American Journal of Botany, 2000, 87(5): 700-710.
[27] Niu S L, Li Z, Xia J Y, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China [J]. Environmental and Experimental Botany, 2008, 63: 91-101.
[28] Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis [J]. Plant, Cell and Environment, 2007, 30: 1 086-1 106.
[29] Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes [J]. Tree Physiology, 2012, 32: 219-231. |