[1] Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72.
[2] 李德仁, 王密, 沈欣,等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42(2):1-5.
[3] 刘韬. 国外视频卫星发展研究[J]. 国际太空, 2014, 9(2):50-56.
[4] 朱厉洪, 回征, 任德锋,等. 视频成像卫星发展现状与启示[J]. 卫星应用, 2015(10):23-28.
[5] 潘益云, 李海超. 低轨视频卫星成像特性分析[J]. 航天器工程, 2015, 24(5):52-57.
[6] Yilmaz A, Javed O, Shah M, et al. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4):1-45.
[7] Mithun N C, Howlader T, Rahman S M, et al. Video-based tracking of vehicles using multipleztime-spatialzimages[J]. Expert Systems with Applications, 2016, 62:17-31.
[8] 张过. 卫星视频处理与应用进展[J]. 应用科学学报, 2016, 34(4):361-366.
[9] 付凯林, 杨芳, 黄敏,等. 低轨道视频卫星任务模式的研究与应用[C]//北京力学会学术年会, 2015:17-22.
[10] Amri S, Barhoumi W, Zagrouba E, et al. A robust framework for joint background/foreground segmentation of complex video scenes filmed with freely moving camera[J]. Multimedia Tools and Applications, 2010, 46(2):175-205.
[11] Sobral A, Vacavant A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[J]. Computer Vision and Image Understanding, 2014, 122(5):4-21.
[12] Appiah K, Hunter A, Dickinson P, et al. Accelerated hardware video object segmentation:from foreground detection to connected components labelling[J]. Computer Vision and Image Understanding, 2010, 114(11):1282-1291.
[13] Khare M, Srivastava R K, Khare A, et al. Single change detection-based moving object segmentation by using Daubechies complex wavelet transform[J]. Iet Image Processing, 2014, 8(6):334-344.
[14] Yin H, Chai Y, Yang S X, et al. Fast-moving target tracking based on mean shift and frame-difference methods[J]. Journal of Systems Engineering and Electronics, 2012, 22(4):587-592.
[15] Alani M, Hammouri A. Video compression algorithm based on frame difference approaches[J]. International Journal of Soft Computing, 2011, 2(4):67-79.
[16] Suganyadevi K, Malmurugan N. OFGM-SMED:an efficient and robust foreground object detection in compressed video sequences[J]. Engineering Applications of Artificial Intelligence, 2014, 28(1):210-217.
[17] Xin Y, Hou J, Dong L, et al. A self-adaptive optical flow method for the moving object detection in the video sequences[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(19):5690-5694.
[18] Yalcin H, Hebert M, Collins R T, et al. A flow-based approach to vehicle detection and background mosaicking in airborne video[J]. Computer Vision and Pattern Recognition, 2005:1202-1202.
[19] George K, Konstantinos K. Vehicle detection and traffic density monitoring from very high resolution satellite video data[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2015:1881-1884.
[20] Yang T, Wang X, Yao B, et al. Small moving vehicle detection in a satellite video of an urban area[J]. Sensors, 2016, 16(9):1528.
[21] Barnich O, Droogenbroeck M V. ViBe:a powerful random technique to estimate the background in video sequences[J]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009:945-948.
[22] Qiu G N, Quan H M. Moving object detection algorithm based on symmetrical-differencing and background subtraction[J]. Computer Engineering and Applications, 2014, 50:158-162.
[23] Bhattacharya S, Idrees H, Saleemi I, et al. Moving object detection and tracking in forward looking Infra-Red aerial imagery[J]. Machine Vision Beyond Visible Spectrum, 2011, 1:221-252.
[24] Cao Y T, Wang G, Yan D, et al. Two algorithms for the detection and tracking of moving vehicle targets in aerial Infrared image sequences[J]. Remote Sensing, 2015, 8(8):28-49.
[25] 谢红, 原博, 解武. LK光流法和三帧差分法的运动目标检测算法[J]. 应用科技, 2016, 43(3):23-28, 33.
[26] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 9(1):62-66. |