[1] Otanicar T P, Phelan P E, Golden J S. Optical properties of liquids for direct absorption solar thermal energy systems[J]. Solar Energy, 2009, 83(7):969-977.
[2] Otanicar T P, Phelan P E, Prasher R S, et al. Nanofluid-based direct absorption solar collector[J]. Journal of Renewable & Sustainable Energy, 2010, 2(3):1-13.
[3] Yousefi T, Veysi F, Shojaeizadeh E, et al. An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2012, 39(1):293-298.
[4] Zamzamian A, Keyanpourrad M, Kianineyestani M, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2014, 71(11):658-664.
[5] Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles[J]. RSC Advances, 2014, 4(31):16206-16213.
[6] Sani E, Mercatelli L, Barison S, et al. Potential of carbon nanohorn-based suspensions for solar thermal collectors[J]. Solar Energy Materials & Solar Cells, 2011, 95(11):2994-3000.
[7] Dong X, Ji X, Wu H, et al. Shape control of silver nanoparticles by stepwise citrate reduction[J]. Journal of Physical Chemistry C, 2009, 113(16):6573-6576.
[8] Cole J R, Mirin N A, Knight M W, et al. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications[J]. Journal of Physical Chemistry C, 2009, 113(28):12090-12094.
[9] Chen H, Shao L, Ming T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small, 2010, 6:2272-2280.
[10] Jiang K, Smith D A, Pinchuk A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles[J]. The Journal of Physical Chemistry C, 2013, 117(51):27073-27080. |