[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] Andriotis A N, Richter E, Menon M. Prediction of a new graphenelike Si2BN solid[J]. Physical Review B, 2016, 93(8):081413.
[3] Zhang S, Zhou J, Wang Q, et al. Penta-graphene:a new carbon allotrope[J]. Proceedings of the National Academy of Sciences, 2015, 112(8):2372-2377.
[4] Saji, K J, Tian K, Snure M, et al. 2D Tin Monoxide:an unexplored p-Type van der Waals semiconductor:material characteristics and field effect transistors[J]. Advanced Electronic Materials, 2016, 2(4):1500453.[LM]
[5] Ataca C, Sahin H, Ciraci S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure[J]. The Journal of Physical Chemistry C, 2012, 116(16):8983-8999.
[6] Zhu F, Chen W, Xu Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14(10):1020-1025.
[7] Qin G Z, Yan Q B, Qin Z Z, et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles[J]. Physical Chemistry Chemical Physics, 2015, 17(7):4854-4858.
[8] Xu Y, Yan B, Zhang H J, et al. Large-gap quantum spin Hall insulators in tinfilms[J]. Physical Review Letters, 2013, 111(13):136804.
[9] Peng B, Zhang H, Shao H, et al. Low lattice thermal conductivity of stanene[J]. Scientific Reports, 2016, 6:20225.
[10] Ezawa M. Monolayer topological insulators:silicene, germanene, and stanene[J]. Journal of the Physical Society of Japan, 2015, 84(12):121003.
[11] 方武章, 张礼川, 闫清波, 等. 应变对硒化锡和硫化锡拉胀材料力学性质和能带结构的调控[J]. 中国科学院大学学报, 2017, 34(1):8-14.
[12] Zhou L, Kou L, Sun Y, et al. New family of quantum spin hall insulators in two-dimensional transition-metal halide with large nontrivial band gaps[J]. Nano Letters, 2015, 15(12):7867-7872.
[13] Zhou L, Shi W, Sun Y, et al. Two-dimensional rectangular tantalum carbide halides TaCX (X=Cl, Br, I):novel large-gap quantum spin Hall insulators[J]. 2D Materials, 2016, 3(3):035018.
[14] He J, Ma S, Lyu P, et al. Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers[J]. Journal of Materials Chemistry C, 2016, 4(13):2518-2526.
[15] Zhou Y, Lu H, Zu X, et al. Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets[J]. Scientific Reports, 2016, 6(5):19407.
[16] Torun E, Sahin H, Singh S K, et al. Stable half-metallic monolayers of FeCl2[J]. Applied Physics Letters, 2015, 106(19):192404.
[17] Tolédano P, Ayala A P, Furtado Filho A F G, et al. Magnetoelectric effects in the spiral magnets CuCl2 and CuBr2[J]. Journal of Physics:Condensed Matter, 2016, 29(3):035701.
[18] Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426(6962):55-58.
[19] De Groot R A, Mueller F M, Van Engen P G, et al. New class of materials:half-metallic ferromagnets[J]. Physical Review Letters, 1983, 50(25):2024-2027.
[20] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics:a spin-based electronics vision for the future[J]. Science, 2001, 294(5546):1488-1495.
[21] Lyu M, Liu Y, Zhi Y, et al. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition[J]. Journal of the American Chemical Society, 2015, 137(47):15043-15048.
[22] Wang H, Zhang J, Hang X, et al. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering[J]. Angewandte Chemie, 2015, 127(4):1211-1215.
[23] Bona G L, Meier F, Taborelli M, et al. Spin polarized photoemission from NiMnSb[J]. Solid State Communications, 1985, 56(4):391-394.
[24] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1):558-561.
[25] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
[26] Lejaeghere K, Bihlmayer G, Bjorkman T, et al. Reproducibility in density functional theory calculations of solids[J]. Science, 2016, 351(6280):1415-1423.
[27] Blochl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953.
[28] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
[29] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192.
[30] Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3):354-360.
[31] Weber D, Schoop L M, Duppel V, et al. Magnetic properties of restacked 2D spin 1/2 honeycomb RuCl3 nanosheets[J]. Nano Letters, 2016, 16(6):3578-3584.
[32] Plumb K W, Clancy J P, Sandilands L J, et al. α-RuCl3:a spin-orbit assisted Mott insulator on a honeycomb lattice[J]. Physical Review B, 2014, 90(4):041112.
[33] Zhou J, Sun Q. Magnetism of phthalocyanine-based organometallic single porous sheet[J]. Journal of the American Chemical Society, 2011, 133(38):15113-15119.
[34] Wolff U. Collective Monte Carlo updating for spin systems[J]. Physical Review Letters, 1989, 62(4):361-364. |