[1] Ou W, Zheng X J, Gou F J, et al. A physical model of an ejection suppressed CPS liquid lithium divertor target[J]. Nucl Fusion 55, 2015, 043015, 1-11.
[2] Nieto M, Ruzic D N, Olczak W, et al. Measurement of implanted helium particle transport by a flowing liquid lithium film[J]. Journal of Nuclear Materials, 2006,350(2):101-112.
[3] Boscary J, Peacock A, Smirnow M, et al. Summary of research and development activities for the production of the divertor target elements of wendelstein 7-x[J]. Ieee Transactions on Plasma Science, 2014,42(3):533-538.
[4] Brauer T, Klinger T, Bosch H S. Progress, challenges, and lessons learned in the construction of wendelstein 7-x[J]. Ieee Transactions on Plasma Science, 2012,40(3):577-583.
[5] Saint-Laurent F. Steady state operation and control experiments on tore supra[J]. Nuclear Fusion, 2000,40(6):1047-1055.
[6] Jaworski M A, Gerhardt S P, Morley N B, et al. Macroscopic motion of liquid metal plasma facing components in a diverted plasma[J]. Journal of Nuclear Materials. 2011,415(1):S985-S988.
[7] Mistrangelo C, Buhler L. Electric flow coupling in the hcll blanket concept[J]. Fusion Engineering and Design, 2008,83(7-9):1232-1237.
[8] Apicella M L, Mazzitelli G, Ridolfini V P, et al. First experiments with lithium limiter on ftu[J]. Journal of Nuclear Materials, 2007,363(3):1346-1351.
[9] Wenyu Xu, Davide Curreli, David N. Ruzic. Computational studies of thermoelectric MHD driven liquid lithium flow in metal trenches[J]. Fusion Engineering and Design, 2014,89:2868-2874.
[10] Mirnov S V, Evtikhin V A. The tests of liquid metals (ga, li) as plasma facing components in t-3m and t-11m tokamaks[J]. Fusion Engineering and Design, 2006,81(1-7):113-119.
[11] Sano Y, Shinoda Y, Ozawa M. A strategic recovery of rare-metal fission products in spent nuclear fuel[J]. Nuclear Technology, 2004,148(3):348-357.
[12] Guilhem D, Bondil J L, Bertrand B, et al. Tore-supra infrared thermography system, a real steady-state diagnostic[J]. Fusion Engineering and Design, 2005,74(1-4):879-883.
[13] Zuoa G Z, Rena J, Hua J S, et al. the HT-7 team. Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak[J]. Fusion Engineering and Design, 2014,89:2845-2852.
[14] Kang W S, Xu Z Y, Pan C J. Mhd stabilities of liquid metal jet flows with gradient magnetic field[J]. Fusion Engineering and Design, 2006,81(8-14):1019-1025.
[15] Grossman A, Doerner R P, Luckhardt S. Surface tension enhancement of trim sputtering yields for liquid metal targets[J]. Journal of Nuclear Materials, 2001,290(9):80-84.
[16] Fiflis P, Press A, Xu W, et al. Wetting properties of liquid lithium on select fusion relevant surfaces[J]. Fusion Engineering and Design, 2014,89:2827-2832.
[17] Coventry M D, Allain J P, Ruzic D N. D+, he+ and h+ sputtering of solid and liquid phase tin[J]. Journal of Nuclear Materials, 2003,313(4):636-640.
[18] Eiji H, Sachiko Y S, Hiroshi N, et al. Numerical study on free surface flow of liquid metal lithium for IFMIF[J]. Fusion Engineering and Design, 2013,88:2515-2519.
[19] 贾潇, 王增辉. 等离子体与液态金属相互作用下的不稳定现象分析[J]. 中国科学院大学学报, 2016, 33(1):50-56.
[20] Allain J P, Taylor C N. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface[J]. Physics of Plasmas, 2012,19(5):312-317.
[21] Hua J S, Rena J, Suna Z, et al. An overview of lithium experiments on HT-7 and EAST during 2012J.[J]. Fusion Engineering and Design, 2014,89:2875-2885.
[22] Bastasz R, Eckstein W. Plasma-surface interactions on liquids[J]. Journal of Nuclear Materials, 2001,290(7):19-24.
[23] Lee H J, Park D S, Park Y M, et al. Influence of plasma operation on the pf circulator of kstar hrs system during 2010 campaign[J]. Ieee Transactions on Plasma Science, 2012,40(5):1466-1471.
[24] Sarkar B, Bhattacharya R, Vaghela H, et al. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine[J]. Aip Conference Proceedings, 2013, 14342012:1951-1958.
[25] Ito S, Bromberg L, Takayasu M, et al. Proposal of electrical edge joint for a demountable high-temperature superconducting magnet[J]. Ieee Transactions on Plasma Science, 2012,40(5):1446-1452.
[26] Insepov Z, Hassanein A. Molecular dynamics simulation of li surface erosion and bubble formation[J]. Journal of Nuclear Materials, 2005,337(1-3):912-916.
[27] Fiflis P, Morgan T W, Brons S, et al. Performance of the lithium metal infused trenches in the magnum PSI linear plasma simulator[J]. Nucl Fusion, 2015, 55(11):113004.
[28] McDonald A, Chandra S, Moreau C. Photographing impact of plasma-sprayed particles on rough substrates[J]. Journal of Materials Science, 2008,43(13):4631-4643.
[29] Chiu H R, Ma H K. Solidification models of an impinging metal droplet[J]. Particulate Science and Technology, 2009,27(1):57-67.
[30] Li H Y, Mei S F, Wang L, et al. Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment[J]. International Journal of Heat and Fluid Flow, 2014,47(8):1-8.
[31] Nordlund K, Samela J. Atomic flows, coronas and cratering in au, si and sio2[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2009,267(8/9):1420-1423. |