[1] Aranibar J N, Otter L, Macko S A, et al. Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands[J]. Global Change Biology, 2004, 10(3):359-373.
[2] Handley L L, Raven J A. The use of natural abundance of nitrogen isotopes in plant physiology and ecology[J]. Plant Cell & Environment, 2006, 15(9):965-985.
[3] Sah S P, Brumme R B. Altitudinal gradients of natural abundance of stable isotopes of nitrogen and carbon in the needles and soil of a pine forest in Nepal[J]. Journal of Forest Science, 2003, 49:19-26.
[4] Templer P H, Arthur M A, Lovett G M, et al. Plant and soil natural abundance δ15N:indicators of relative rates of nitrogen cycling in temperate forest ecosystems[J]. Oecologia, 2007, 153(2):399-406.
[5] Kahmen A, Wanek W, Buchmann N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient[J]. Oecologia, 2008, 156(4):861-870.
[6] Cheng S L, Fang H J, Yu G R, et al. Foliarand soil δ15N natural abundances provide field evidence onnitrogen dynamics in temperate and boreal forest ecosystems[J].Plant and Soil, 2010, 337:285-297.
[7] Liu W G, Wang Z. Nitrogen isotopic composition of plantsoil in the Loess Plateau and its responding to environmental change[J]. Chinese Science Bulletion, 2009, 54(2):272-279.
[8] Kang H Z, Liu C J, Yu W J, et al. Variation in foliar δ15N among oriental oak stands over eastern China:patterns and interactions[J]. Journal of Geochemical Exploration, 2011, 110:8-14.
[9] Liu X H, Zhao L J, Menassie G, et al. Foliar δ13C and δ15N values of C3 plants in the Ethiopia Rift Valley and their environmental controls[J]. Chinese Science Bulletin, 2007, 52(9):1265-1273.
[10] Chang C C, McCormick P V, Newman S, et al. Isotopic indicators of environmental change in a subtropical wetland[J]. Ecological Indicators, 2009, 9(5):825-836.
[11] Makarov M I. The nitrogen isotopic composition in soils and plants:its use in environmental studies[J]. Eurasian Soil Science, 2009, 42(12):1335-1347.
[12] Wang L X, D'Odorico P, Ries L, et al. Patterns and implications of plant-soil δ13C and δ15N values in African savanna ecosystems[J]. Quaternary Research, 2010, 73(1):77-83.
[13] Fang Y T, Koba K, Yoh M, et al. Patterns of foliar δ15N and their control in Eastern Asian forests[J]. Ecological Research, 2013, 28(5):735-748.
[14] Yang Y H, Ji C J, Robinson D, et al. Vegetation and soil 15N natural abundance in alpine grasslands onthe Tibetan Plateau:patterns and implications[J]. Ecosystems, 2013, 16(6):1013-1024.
[15] Ariz I, Cruz C, Neves T, et al. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated CO2, temperature and low water availability[J]. Frontiers in Plant Science, 2015, 6:1-10.
[16] Terwilliger V J, Eshetu Z, Colman A, et al. Reconstructing palaeoenvironment from δ13C and δ15N values of soil organic matter:a calibration from arid and wetter elevation transects in Ethiopia[J]. Geoderma, 2008, 147:197-210.
[17] Schatz A K, Zech M, Buggle B, et al. The late Quaternary loess record of Tokaj, Hungary:reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers[J]. Quaternary International, 2011, 240(1/2):52-61.
[18] Das O, Wang Y, Donoghue J, et al. Reconstruction of paleostorms and paleoenvironment using geochemical proxiesarchived in the sediments of two coastal lakes in northwest Florida[J]. Quaternary Science Reviews, 2013, 68(3):142-153.
[19] Liu J C, Liu W G. Soil nitrogen isotopic composition of the Xifeng loess-paleosol sequence and its potential for use as a paleoenvironmental proxy[J]. Quaternary International, 2017, 440:35-41.
[20] 尚晓冬, 时国, 韦恒叶. 贵阳花溪地区早三叠世碳、氧同位素特征及其古环境意义[J]. 中国科学院大学学报, 2015, 32(3):363-372.
[21] Amundson R, Austin A T, Schuur E A G, et al. Global parrerns of the isotopic composition of soil and plant nitrogen[J]. Global Biogeochem Cycles, 2003, 17(1):1-11.
[22] Amundson R. New insights into the global patterns of the isotopic composition of soil and plant nitrogen[J]. Esa Convention,2014,17(1):2076-2079.
[23] Swap R J, Aranibar J N, Dowty P R, et al. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa:patterns and implications[J]. Global Change Biology, 2004, 10(3):359-373.
[24] Craine J M, Elmore A J, Aidar M P, et al. Global patterns of foliar nitrogenisotopes and their relationshipswith climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability[J]. New Phytologist, 2009, 183(4):980-992.
[25] Peri P, Ladd B, Pepper D, et al. Carbon (δ13C)and nitrogen (δ15N) stable isotope compositionin plant and soil in Southern Patagonia's native forests[J]. Global Change Biology, 2012, 18(1):311-321.
[26] Martinelli L A, Piccolo M C, Townsend A R, et al. Nitrogen stable isotopic composition of leaves and soil:tropical versus temperate forests[J]. Biogeochemistry, 1999, 46(1-3):45-65.
[27] 刘艳杰, 许宁, 牛海山. 内蒙古草原常见植物叶片δ13C和δ15N对环境因子的响应[J]. 生态学报, 2016, 36(1):235-243.
[28] Xu Y, He J C, Cheng W X, et al. Natural 15N abundance in soils and plants in relation to N cyclingin a rangeland in Inner Mongolia[J]. Journal of Plant Ecology, 2010, 3(3):201-207.
[29] 刘贤赵, 王国安, 李嘉竹, 等. 中国北方农牧交错带C3草本植物δ13C与温度的关系及其对水分利用效率的指示[J]. 生态学报, 2011, 31(1):123-136.
[30] Cheng W X,Chen Q S,Xu Y Q, et al. Climate and ecosystem 15N natural abundance along a transectof Inner Mongolian grasslands:contrasting regional patternsand global patterns[J]. Global Biogeochemical Cycles, 2009, 23:1-11.
[31] Ma J Y, Sun W, Liu X N, et al. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in Northern China[J]. PLoS ONE, 2012, 7(12):e51894. Doi:10.1371/journal.pone.0051894.
[32] Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology & Systematics, 1987, 18(1):293-320.
[33] Aranibar J N, Anderson I C, Epstein H E, et al. Niriogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa[J]. Journal of Arid Environments, 2008, 72(4):326-337.
[34] Ometto J P H B, Ehleringer J R, Domingues T F,et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the AmazonBasin, Brazil[J]. Biogeochemistry, 2006, 79(1/2):251-274.
[35] Houlton B Z, Sigman D M, Hedin L O. A climate-driven switch in plant nitrogen acquisition within tropical forest communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21):8902-8906.
[36] Sutton M A, Schjorring J K, Wyers G P. Plant-atmosphere exchange of ammonia[J]. Philosophical Transactions:Physical Sciences and Engineering, 1995, 351(1696):261-278.
[37] Bai E, Boutton TW, Liu F, et al. Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna[J]. Oecologia, 2009, 159(3):493-503.
[38] Yi X F, Yang Y Q. Enrichement of stable carbon and nitrogen isotopes of plant populations and planteau pikas along altitudes[J]. Journal of Animal & Feedences, 2006, 15(4):661-667.
[39] Liu X Z, Wang G A, Li J Z, et al. Nitrogen isotope composition characteristics of modern plants andtheir variations along an altitudinal gradient in Dongling Mountain in Beijing. Science China-Earth Sciences, 2010, 53(1):128-140. |