[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5 696):666.
[2] Neto A H C. The electronic properties of graphene[J] Review of Modern Physics, 2009, 81:109.
[3] Kane C L, Mele E J. Quantum spin hall effect in graphene[J]. Physical Review Letters, 2005, 95(22):226 801.
[4] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2009, 452(7 190):970.
[5] Hsieh D, Xia Y, Wray L, et al. Observation of unconventional quantum spin textures in topological insulators[J]. Science, 2009, 323(5 916):919-922.
[6] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6):405-408.
[7] Kane C L, Mele E J. Z-2 topological order and the quantum spin hall effect[J]. Physical Review Letters, 2005, 95(14):146 802.
[8] Fu L, Kane C L, Mele E J, et al. Topological insulators in three dimensions.[J]. Physical Review Letters, 2007, 98(10):106 803.
[9] Fukui T, Hatsugai Y, Suzuki H, et al. Chern numbers in discretized brillouin zone:efficient method of computing (spin) hall conductances[J]. Journal of the Physical Society of Japan, 2005, 74(6):1 674-1 677.
[10] Fukui T, Hatsugai Y. Quantum spin hall effect in three dimensional materials:lattice computation of Z2 topological invariants and its application to Bi and Sb[J]. Journal of the Physical Society of Japan, 2007, 75:53 702.
[11] Yu R, Qi X L, Bernevig A, et al. An equivalent expression of Z2 topological Invariant for band insulators using non-Abelian Berry's connection[J]. Physical Review B, 2011, 84(7):2 250-2 262.
[12] Shastry B S, Kumar B. SrCu2(BO3)2:a unique Mott Hubbard insulator[J]. Progress of Theoretical Physics Supplement, 2002, 145:1-16.
[13] Romhanyi J, Karlo P, Ganesh R. Hall effect of triplons in a dimerized quantum magnet[J]. Nature Communication,2015, 6:6 805.
[14] Kariyado T, Hatsugai Y. Symmetry-protected quantization and bulk-edge correspondence of massless Dirac fermions application to the fermionic Shastry-Sutherland model[J]. Physical Review B, 2013, 88, 245 126.
[15] Kariyado T, Hatsugai Y. Emergence of topologically stable Dirac dispersions in a Fermionic Shastry-Sutherland Model[J]. JPS Conference Proceedings, 2014, 1:012 001.
[16] Gómezleón Á, Delplace P, Platero G. Engineering anomalous quantum Hall plateaus and antichiral states with ac fields[J]. Physical Review B, 2014, 89(20):747-751.
[17] Delplace P, Gomezleon A, Platero G, et al. Merging of Dirac points and Floquet topological transitions in AC driven graphene[J]. Physical Review B, 2013, 88(24):5 952.
[18] Inoue J, Tanaka A. Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems[J]. Physical Review Letters, 2010, 105(1):017 401.
[19] Calvo H L, Pastawski H M, Roche S, et al. Tuning laser-induced band gaps in graphene[J]. Applied Physics Letters, 2011, 98(23):1.
[20] Zhai X, Jin G. Photoinduced topological phase transition in epitaxial graphene[J]. Physical Review B, 2014, 89(23):130-135.
[21] Oka T, Aoki H. Photovoltaic Hall effect in graphene[J]. Physical Review B, 2009, 79(16):081 406.
[22] Kibis O V. Metal-insulator transition in graphene induced by circularly polarized photons[J]. Physical Review B, 2010, 81:165 433.
[23] Lindner N, Refael G, Galitski V. Floquet topological insulator in semiconductor quantum wells[J]. Nature Physics, 2010, 7(6):490-495.
[24] Usaj G, Perez-Piskunow P M, Foa Torres L E F, et al. Irradiated graphene as a tunable Floquet topological insulator[J]. Physical Review B, 2014, 90:115 423.
[25] Xiong T S, Gong J, An J H. Towards large-Chern-number topological phases by periodic quenching[J]. Physical Review B, 2016, 93(18):184 306.
[26] Kitagawa T, Oka T, Brataas A, Fu L, et al. Transport properties of nonequilibrium systems under the application of light:Photoinduced quantum Hall insulators without Landau levels[J]. Physical Review B, 2011, 84:235 108.
[27] Rudner M S, Lindner N H, Berg E, et al. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems[J]. Physical Review X, 2013, 3(3):360.
[28] Perez-Piskunow P M, Usaj G, Balseiro C A, et al. Floquet chiral edge states in graphene[J]. Phys Rev B, 2014, 89:12 140.
[29] Grifoni M, Hanggi P. Driven quantum tunneling[J]. Physics Reports, 1998, 304(5/6):229-354.
[30] Kohler S, Lehmann J, Hanggi P. Driven quantum transport on the nanoscale[J].Phys Rep, 2003, 406:379-443.
[31] Sambe H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field[J]. Phys Rev A, 1973, 7:2203.
[32] Sun K, Yao H, Fradkin E, et al. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D fermi systems with a quadratic band crossing[J]. Physical Review Letters, 2009, 103(4):046 811.
[33] Kai S, Fradkin E. Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids[J]. 2008, 78(24):1 879-1 882.
[34] Sun K, Gu Z, Katsura H, et al. Nearly flatbands with nontrivial topology.[J]. Physical Review Letters, 2011, 106(23):236 803.
[35] Banerjee S, Singh R R P, Pardo V, et al. Tight-binding modeling and low-energy behavior of the semi-Dirac point[J]. Physical Review Letters, 2009, 103:016 402.
[36] Montambaux G, Piechon F, Fuchs J N, et al. Merging of Dirac points in a two-dimensional crystal[J] Physical Review B, 2009, 80:153 412.
[37] Fang A, Zhang Z Q, Louie S G, et al. Klein tunneling and supercollimation of pseudospin-1 photons[J]. Physical Review B, 2016, 93:035 422.
[38] Mukherjee S, Spracklen A, Choudhury D, et al. Observation of a localized flat-band state in a photonic Lieb lattice[J]. Physical Review Letters, 2015, 114(24):245 504.
[39] Vicencio R A, Cantillano C, Morales-Inostroza L, et al. Observation of localized states in Lieb photonic lattices[J]. Physical Review Letters, 2015, 114(24):245 503.
[40] Chu R L, Shan W Y, Lu J, et al.Surface and edge states in topological semimetals[J] Physical Review B, 2011, 83:075 110.
[41] Sancho M P L, Sancho J M L, Rubio J. Highly convergent schemes for the calculation of bulk and surface Green functions[J] J Phys F:Met Phys, 1983, 14:1 205. |