[1] 吴宗鑫,张作义.世界核电发展趋势与高温气冷堆[J].核科学与工程,2000(3):211-219.
[2] Zhou Y, Zhou K, Ma Y, et al. Thermal hydraulic simulation of reactor of HTR-PM based on thermal-fluid network and SIMPLE algorithm[J]. Progress in Nuclear Energy, 2013, 62(8):83-93.
[3] Chen F B, Dong Y J, Zhang Z Y. Post-test simulation of the HTR-10 reactivity insertion without scram[J]. Annals of Nuclear Energy, 2016, 92:36-45.
[4] 李林森,王侃,宋小明.CFD在核能系统分析中应用的最新进展[J].核动力工程,2009,30(S1):28-33.
[5] 彭浩然,孙俊.高温气冷堆堆芯球床的流动与换热分析[J].工程热物理学报,2016,37(5):1076-1083.
[6] Anderson N, Hassan Y, Schultz R. Analysis of the hot gas flow in the outlet plenum of the very high temperature reactor using coupled RELAP5-3D system code and a CFD code[J]. Nuclear Engineering and Design, 2008, 238(1):274-279.
[7] Ferng Y M, Chi C W. CFD investigating the air ingress accident occurred in a HTGR simulation of thermal-hydraulic characteristics[J]. Nuclear Engineering and Design, 2012, 245:28-38.
[8] 梁好玉,武俊梅.压水堆燃料棒束新型定位格架的数值分析[J].中国科学院大学学报,2018,35(2):200-208.
[9] 宋士雄,魏泉,蔡翔舟,等.基于CFD方法的球床式高温气冷堆稳态热工水力分析[J].核技术,2013,36(12):41-47.
[10] 周克峰,周杨平,眭喆,等.基于流动与传热网络的HTR-PM堆内热工水力模拟[J].原子能科学技术,2012,46(8):918-926.
[11] 陈森,刘余,田茂林,等.基于多孔介质模型的压水堆堆芯温场数值模拟[J].核技术,2015,38(9):66-71.
[12] Oh C, Kim E, Schultz R, et al. Comprehensive thermal hydraulics research of the very high temperature gas cooled reactor[J]. Nuclear Engineering and Design, 2010, 240(10):3361-3371.
[13] Wang C, Sun K, Hu L W, et al. Thermal-hydraulic analyses of transportable fluoride salt-cooled high-temperature reactor with CFD modeling[J]. Nuclear Technology, 2016, 196(1):34-52.
[14] 李洋. 高温气冷堆氦气流动及燃料球冷却过程数值模拟[D].北京:北京化工大学,2016.
[15] 陈静,田文喜,韦宏洋,等.基于多孔介质模型的行波堆TP-1堆芯稳态温度场与流场数值模拟[J].原子能科学技术,2013,47(11):1966-1970.
[16] 李良星,李会雄.多尺寸颗粒堆积多孔介质床有效直径研究[J].工程热物理学报,2014,35(9):1785-1788. |