[1] Yu D. Research on anomaly intrusion detection technology in wireless network[C]//2018 International Conference on Virtual Reality and Intelligent Systems. IEEE, 2018:540-543. [2] Akoglu L, Tong H, Vreeken J, et al. Fast and reliable anomaly detection in categorical data[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. ACM, 2012:415-424. [3] 和湘, 刘晟, 姜吉国. 基于机器学习的入侵检测方法对比研究[J]. 信息网络安全, 2018, 18(5):1-11. [4] 魏书宁, 陈幸如, 唐勇, 等. AR-HELM算法在网络流量分类中的应用研究[J]. 信息网络安全, 2018, 18(1):9-14. [5] Tang T A, Mhamdi L, McLernon D, et al. Deep recurrent neural network for intrusion detection in sdn-based networks[C]//20184th IEEE Conference on Network Softwarization and Workshops. IEEE, 2018:202-206. [6] Yin C, Zhu Y, Fei J, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5:21954-21961. [7] Staudemeyer R C. Applying long short-term memory recurrent neural networks to intrusion detection[J].South African Computer Journal, 2015, 56(1):136-154. [8] Tang T A, Mhamdi L, McLernon D, et al. Deep learning approach for network intrusion detection in software defined networking[C]//Wireless Networks and Mobile Communications, 2016 International Conference on. IEEE, 2016:258-263. [9] Vinayakumar R, Soman K P, Poornachandran P. Applying convolutional neural network for network intrusion detection[C]//Advances in Computing, Communications and Informatics, 2017 International Conference on. IEEE, 2017:1222-1228. [10] Potdar K, Pardawala T S, Pai C D. A comparative study of categorical variable encoding techniques for neural network classifiers[J]. International Journal of Computer Applications, 2017, 175(4):7-9. [11] Guo C, Berkhahn F. Entity embeddings of categorical variables[J]. arXiv preprint arXiv:1604.06737, 2016. [12] 於帮兵, 王华忠, 颜秉勇. 基于长短时记忆网络的工业控制系统入侵检测[J]. 信息与控制, 2018, 47(1):54-59. [13] Dhanabal L, Shantharajah S P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6):446-452. [14] Shijia E, Xiang Y. Entity search based on the representation learning model with different embedding strategies[J]. IEEE Access, 2017,5:15174-15183. [15] Wu F, Song J, Yang Y, et al. Structured embedding via pairwise relations and long-range interactions in knowledge base[C]//AAAI. 2015:1663-1670. [16] Yuan M, Wu Y, Lin L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]//Aircraft Utility Systems, IEEE International Conference on. IEEE, 2016:135-140. [17] De Brébisson A, Simon É, Auvolat A, et al. Artificial neural networks applied to taxi destination prediction[J]. arXiv preprint arXiv:1508.00021, 2015. [18] Dai H, Dai B, Song L. Discriminative embeddings of latent variable models for structured data[C]//International Conference on Machine Learning, 2016:2702-2711. [19] Amihai I, Chioua M, Gitzel R, et al. Modeling machine health using gated recurrent units with entity embeddings and K-means clustering[C]//2018 IEEE 16th International Conference on Industrial Informatics. IEEE, 2018:212-217. [20] Vinayakumar R, Soman K P, Poornachandran P. Long short-term memory based operation log anomaly detection[C]//Advances in Computing, Communications and Informatics, 2017 International Conference on. IEEE, 2017:236-242. [21] Duan L, Xiao Y. An Intrusion Detection model based on fuzzy C-means algorithm[C]//20188th International Conference on Electronics Information and Emergency Communication. IEEE, 2018:120-123. |