[1] Zhao X, Wang W, Liu L, et al. A flexible quantile regression model for medical costs with application to Medical Expenditure Panel Survey Study[J]. Statistics in Medicine, 2018, 37(17):2645-2666. [2] Petrella L, Raponi V. Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress[J]. Journal of Multivariate Analysis, 2019, 173:70-84. [3] Tan X Z, Gan T Y, Chen S, et al. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections[J]. Climate Dynamics, 2019, 52:2105-2124. [4] Xu B, Lin B. Investigating the differences in CO2 emissions in the transport sector across Chinese provinces:evidence from a quantile regrssion model(Article)[J]. Journal of Cleaner Production, 2018, 27(175):109-122. [5] 姜成飞. 分位数回归方法综述[J]. 科技信息, 2013, 30(25):185-240. [6] He X, Zhu L X. A lack-of-fit test for quantile regression[J]. Journal of the American Statistical Association, 2003,98(464):1013-1022. [7] Mercedes C A, César S S, Wenceslao G M. A lack-of-fit test for quantile regression models with high-dimensional covariates[J]. Computational Statistics and Data Analysis, 2015, 33(88):128-138. [8] 关静. 分位数回归理论及其应用[D]. 天津:天津大学, 2009. [9] 朱平芳, 张征宇. 无条件分位数回归:文献综述与应用实例[J]. 统计研究, 2012, 29(3):88-96. [10] 陈建宝, 丁军军. 分位数回归技术综述[J]. 统计与信息论坛, 2008, 23(3):89-96. [11] Gao J Y. Computation in quantile and composite quantile regression models with or without regularization[D]. Edmonton:University of Alberta, 2015. [12] Hunter D R, Lange K. Quantile regression via an MM algorithm[J]. Journal of Computational and Graphical Statistics, 2000, 9(1):60-77. [13] Wu T Z, Yu K M, Yu Y. Single-index quantitle regression[J]. Jornal of Multivariate Analysis, 2010, 40(101):1607-1621. [14] Kong E F, Xia Y C. A single-index quantile regression model and its estimation[J]. Econometric Theory, 2012, 28(4):730-768. [15] Kuruwita C N. Non-iterative estimation and variable selection in the single-index quantile regression model[J]. Communications in Statistics-Simulation and Computation, 2016, 45(10):3615-3628. [16] Christou E. A Non-iterative method for fitting the single index quantile regression model with uncensored and censored data[D]. Pennsylvania:The Pennsylvania State University, 2016. [17] Hu Y A, Gramacy R B, Lian H. Bayesian quantile regression for single-index models[J]. Statistics and Computing, 2013, 23(4):437-454. [18] Alshaybawee T, Midi H, Alhamzawi R. Bayesian elastic net single index quantile regression[J]. Journal of Applied Statistics, 2017, 44(5):853-871. [19] Jiang R, Qian W M, Zhou Z G. Weighted composite quantile regression for single-index models[J]. Jornal of Multivariate Analysis, 2016, 148:34-48. [20] Liu H L, Yang H. Estimation and variable selection in single-index composite quantile regression[J]. Communications in Statistics-Simulation and Computation, 2017, 46(9):7022-7039. [21] Zhong W, Zhu L P, Li R Z, et al. Regularized quantile regression and robust feature screening for single index models[J]. Statistica Sinica, 2016, 26(1):69-95. [22] Jiang Y L. Nonparametric quantile regression models via majorization minimization-algorithm[J]. Statistics and Its Interface, 2014, 7(2):235-240. [23] Xie S Y, Wan A T K, Zhou Y. Quantile regression methods with varying-coefficient models for censored data[J]. Computational Statistics and Data Analysis, 2015, 88:154-172. [24] Chen Y L, Tang M L, Tian M Z. Semiparametric hierarchical composite quantile regression[J]. Communications in statistics:theory and methods, 2015, 50(4-6):996-1012. [25] Lin W, Kulasekera K B. Indentifiability of single-index models and additive-index models[J]. Biometrica Jornal, 2007, 31(94):496-501. [26] Chaudhuri P, Doksum K, Samarov A. On average derivative quantile regression[J]. Annals of Statistics, 1997, 25(2):715-744. [27] Yu K M, Jones M C. Local linear quantile regression[J]. Journal of the American Statistic Association, 1998,93(441):228-237. [28] Lv Y Z, Zhang R Q, Zhao W H, et al. Quantile regression and variable selection of partial linear single-index model[J]. Ann Inst Stat Math, 2015, 67(2):375-409. [29] De Gooijer J G, Zerom D. On additive conditional quantiles with high-dimensional covariates[J]. Journal of the American Statistic Association, 2003, 98(116):135-146. |