[1] 石文静,高峰,柴洪友. 复合材料在航天器结构中的应用与展望[J]. 宇航材料工艺, 2019, 49(4):1-6. [2] 门永林,楚永萍,冯遵委. 纤维增强复合材料在转向架上的应用研究[J]. 铁道机车车辆, 2019, 39(3):92-94, 100. [3] 王胜光,张永利,毕孝法,等. 碳纤维复合材料在轨道交通车辆空调机壳体上的应用[J]. 城市轨道交通研究, 2019, 22(5):188-191. [4] 牟文珺,桂洪斌. 复合材料基座在船舶设备振动传递控制中的应用[J]. 舰船科学技术, 2019, 41(2):50-55. [5] 孙佳伟,傅少君,叶建乔,等. UHTCC三点弯曲梁裂纹扩展的数值模拟研究[J]. 水利水电技术, 2019, 50(5):136-142. [6] 徐世烺,陈超,李庆华,等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9):50-59. [7] 林皋,张鹏冲. 板结构计算模型的新发展[J]. 计算力学学报, 2019, 36(4):429-440. [8] 贾利勇,廖斌斌,于龙,等. 基于Puck理论的复合材料层合板横向剪切失效分析[J]. 复合材料学报, 2019, 36(10):2286-2293. [9] 杨万友,王家序,黄彦彦,等. 热载荷作用下颗粒增强复合材料温升分布数值模拟[J]. 上海交通大学学报, 2019, 53(11):1342-1351. [10] 惠新育,许英杰,张卫红,等. 平纹编织SiC/SiC复合材料多尺度建模及强度预测[J]. 复合材料学报, 2019, 36(10):2380-2388. [11] Smagulova K, James A P. A survey on LSTM memristive neural network architectures and applications[J]. The European Physical Journal Special Topics, 2019, 228(10):2313-2324. [12] 周永生. 基于LSTM神经网络的PM2.5预测[D]. 长沙:湖南大学, 2018. [13] Gers F A, Schtmidhuber E. LSTM recurrent networks learn simple context-free and context-sensitive languages[J]. IEEE Transactions on Neural Networks, 2001, 12(6):1333-1340. [14] Greff K, Srivastava R K, Koutník J, et al. LSTM A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10):2222-2232. [15] Alahi A, Goel K, Ramanathan V, et al. Social LSTM:Human trajectory prediction in crowded spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas:IEEE, 2016:961-971. [16] Turkoglu M, Hanbay D, Sengur A. Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests[J]. Journal of Ambient Intelligence and Humanized Computing, 2019:1-11. [17] Qi Y T, Zhou Z N, Yang L L, et al. A decomposition-ensemble learning model based on LSTM neural network for daily reservoir inflow forecasting[J]. Water Resource Management, 2019, 33:4123-4139. [18] 杨甲甲,刘国龙,赵俊华,等. 采用长短期记忆深度学习模型的工业负荷短期预测方法[J]. 电力建设, 2018, 39(10):20-27. [19] 杨国田,张涛,王英男,等. 基于长短期记忆神经网络的火电厂NOx排放预测模型[J]. 热力发电, 2018, 47(10):12-17. [20] 许宁,徐昌荣. 改进型LSTM变形预测模型研究[J]. 江西理工大学学报, 2018, 39(5):45-51. [21] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering,1960, 82(1):35-45. [22] Haykin S. Adaptive Filter Theory, Fifth Edition[M]. Andhra Pradesh:Department of Electronics and Communication Engineering GMR Institute of Technology Rajam, 2014:409-435. |