[1] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. DOI:10.1109/34.121791. [2] 王飞鹏, 肖俊, 王颖, 等. 一种基于高斯曲率的ICP改进算法[J]. 中国科学院大学学报, 2019, 36(5):702-708. DOI:10.7523/j.issn.2095-6134.2019.05.016. [3] Aiger D, Mitra N J, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2008, 27(3): 1-10. DOI:10.1145/1360612.1360684. [4] Yang B S, Zang Y F. Automated registration of dense terrestrial laser-scanning point clouds using curves[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95:109-121. DOI:10.1016/j.isprsjprs.2014.05.012. [5] Xian Y R, Xiao J, Wang Y.A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[J]. Frontiers of Computer Science, 2019, 13(1): 170-182. DOI:10.1007/s11704-016-6191-1. [6] Wang F P, Xiao J, Wang Y. Efficient rock-mass point cloud registration using n-point complete graphs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(11): 9332-9343. DOI:10.1109/TGRS.2019.2926201. [7] Hu L, Xiao J, Wang Y. An automatic 3D registration method for rock mass point clouds based on plane detection and polygon matching[J]. The Visual Computer, 2020, 36(4): 669-681. DOI:10.1007/s00371-019-01648-z. [8] Biber P, Straßer W. The normal distributions transform: a new approach to laser scan matching[ C]// Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.No.03CH37453). October 27-31, 2003, Las Vegas, NV, USA. IEEE, 2003: 2743-2748. DOI:10.1109/IROS.2003.1249285. [9] Vongkulbhisal J, de La Torre F, Costeira J P. Discriminative optimization: theory and applications to point cloud registratio [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 3975-3983. DOI:10.1109/CVPR.2017.423. [10] Elbaz G, Avraham T, Fischer A. 3D point cloud registration for localization using a deep neural network auto-encoder [C]// 2017 IEEE Conference on Computer Vision and Pattern Recongition(CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 2472-2481. DOI:10.1109/CVPR.2017.265. [11] Lu W X, Wan G W, Zhou Y, et al. DeepVCP: an end-to-end deep neural network for point cloud registration [C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2019:12-21. DOI:10.1109/ICCV.2019.00010. [12] 舒程珣,何云涛,孙庆科. 基于卷积神经网络的点云配准方法[J]. 激光与光电子学进展,2017, 54(3): 129-137. DOI:10.3788/LOP54.031001. [13] 刘鸣, 舒勤, 杨赟秀, 等. 基于独立成分分析的三维点云配准算法[J]. 激光与光电子学进展, 2019, 56(1):181-189. DOI:10.3788/LOP56.011203. [14] Zhang X P, Li H J, Cheng Z L, et al. Robust curvature estimation and geometry analysis of 3D point cloud surfaces[J]. Journal of Information & Computational Science, 2009, 6(5) : 1983-1990. [15] Holz D, Ichim A E, Tombari F, et al. Registration with the Point Cloud Library: a modular framework for aligning in 3-D[J]. IEEE Robotics & Automation Magazine, 2015, 22(4):110-124. DOI:10.1109/MRA.2015.2432331. [16] Lato M, Kemeny J, Harrap R M, et al. Rock bench: establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry[J]. Computers & Geosciences, 2013, 50:106-114. DOI:10.1016/j.cageo.2012.06.014. |