[1] Lee J S, Pottier E. 极化雷达成像基础与应用[M]. 洪文, 李洋, 尹嫱,等译. 北京:电子工业出版社, 2013. [2] 赵昌锋. 基于深度学习的干涉SAR图像分类[D]. 西安:西安电子科技大学, 2015. [3] 张澄波. 综合孔径雷达:原理、系统分析与应用[M]. 北京:科学出版社, 1989. [4] Lee J S, Pottier E. Polarimetric radar imaging:from basics to applications[M]. Florida:CRC Press, 2009. [5] Ye X, Zhang H, Wang C, et al. Classification of high-resolution SAR imagery by Random Forest classifier[C]//2013 Asia-Pacific Conference on Synthetic Aperture Radar(APSAR). September 23-27,2013,Tsukeba,Japan. IEEE, 2013:312-316. [6] Demirhan M E, Salor Ö. Classification of targets in SAR images using SVM and k-NN techniques[C]//201624th Signal Processing and Communication Application Conference(SIU). May 16-19,2016,Zonguldak,Turkey. IEEE, 2016:1581-1584.DOI:10.1109/SIU.2016.7496056. [7] Hou B, Yang C, Ren B, et al. Decomposition-feature-iterative-clustering-based superpixel segmentation for PolSAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8):1239-1243.DOI:10.1109/LGRS.2018.2833492. [8] Deng L. Deep learning:methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7(3/4):197-387.DOI:10.1561/2000060039. [9] Chen Y Q, Jiao L C, Li Y Y, et al. Multilayer projective dictionary pair learning and sparse autoencoder for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):6683-6694.DOI:10.1109/TGRS.2017.2727067. [10] Liu H Y, Yang S Y, Gou S P, et al. Polarimetric SAR feature extraction with neighborhood preservation-based deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1456-1466.DOI:10.1109/JSTARS.2016.2618891. [11] Zhu H L, Lin N, Leung H, et al. Target classification from SAR imagery based on the pixel grayscale decline by graph convolutional neural network[J]. IEEE Sensors Letters, 2020, 4(6):1-4.DOI:10.1109/LSENS.2020.2995060. [12] Zhang Z M, Wang H P, Xu F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7177-7188.DOI:10.1109/TGRS.2017.2743222. [13] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society:Series B (Methodological), 1977, 39(1):1-22.DOI:10.1111/j.2517-6161.1997.tb01600.x. [14] Li X, Zhong Z S, Wu J L, et al. Expectation-maximization attention networks for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV). October 27-November 2,2019,Seoul,Korea(South). IEEE, 2019:9166-9175.DOI:10.1109/ICCV.2019.00926. [15] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. June 27-30, 2016,Las Vegas,NV, USA. IEEE, 2016:770-778.DOI:10.1109/CVPR.2016.90. [16] Hu J, Shen L, Albanie S. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City,UT,USA. IEEE, 2018:7132-7141.DOI:10.1109/CVPR.2018.00745. [17] 刘杰, 张庆君. 高分三号卫星及应用概况[J]. 卫星应用, 2018(6):12-16.DOI:10.3969/j.issn.1674-9030.2018.06.006. [18] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. June 7-12,2015,Boston,MA, USA. IEEE, 2015:3431-3440.DOI:10.1109/CVPR.2015.7298965. [19] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017,Honolulu,HI,USA. IEEE, 2017:6230-6239.DOI:10.1109/CVPR.2017.660. [20] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.DOI:10.1109/TPAMI.2017.2699184. |