[1] 李志远. 人脸识别技术研究现状综述[J]. 电子技术与软件工程, 2020, 27(13): 106-107. [2] 邓良, 许庚林, 李梦杰, 等. 基于深度学习与多哈希相似度加权实现快速人脸识别[J]. 计算机科学, 2020, 47(9): 163-168. [3] 李刚, 高政. 人脸自动识别方法综述[J]. 计算机应用研究, 2003, 20(8): 4-9,40.DOI:10.3969/j.issn.1001-3695.2003.08.002. [4] 张翠平, 苏光大. 人脸识别技术综述[J]. 中国图象图形学报, 2000, 5(11): 885-894.DOI:10.3969/j.issn.1006-8961.2000.11.001. [5] Girshick R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13, 2015, Santiago, Chile. IEEE, 2015: 1440-1448.DOI:10.1109/ICCV.2015.169. [6] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2017,39(6): 1137-1149.DOI:10.1109/TPAMI.2016.2577031. [7] He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2980-2988. [8] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 779-788.DOI:10.1109/CVPR.2016.91. [9] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6517-6525.DOI:10.1109/CVPR.2017.690. [10] Redmon J, Farhadi A. YOLOv3: an incremental improvement [EB/OL]. 2018: arXiv: 1804.02767. (2018-04-08) [2021-03-08]. https://arxiv.org/abs/1804.02767. [11] 高刘雅, 孙冬, 卢一相. 基于轻量级注意机制的人脸检测算法[J]. 激光与光电子学进展, 2021, 58(2): 130-138.DOI:10.3788/LOP202158.0210010. [12] 潘浩然. 基于改进损失函数的YOLOV3的人脸检测[D]. 南昌: 南昌大学, 2020. [13] Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7-12, 2015, Boston, MA, USA. IEEE, 2015: 815-823.DOI:10.1109/CVPR.2015.7298682. [14] Dai J F, He K M, Sun J. Instance-aware semantic segmentation via multi-task network cascades[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 3150-3158.DOI:10.1109/CVPR.2016.343. [15] 刘长伟. 基于MTCNN和Facenet的人脸识别[J].邮电设计技术, 2020, 63(2): 32-38.DOI:10.12045/j.issn.1007-3043.2020.02.008. [16] 李林峰, 李春青, 田博源, 等. 基于MTCNN的FaceNet架构的人脸识别考勤系统设计与实现[J]. 电脑知识与技术, 2020, 16(27): 181-183.DOI:10.14004/j.cnki.ckt.2020.2926. [17] Yang S, Luo P, Loy C C, et al. WIDER FACE: a face detection benchmark[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 5525-5533.DOI:10.1109/CVPR.2016.596. [18] Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2020,42(8): 2011-2023. [19] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 770-778. [20] Xie S N, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 5987-5995. [21] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. 2019,arXiv:1911.08287.(2019-11-19)[2021-03-10]. http://arxiv.org/abs/1911.08287. [22] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20, 2019, Long Beach, CA, USA. IEEE, 2019: 658-666.DOI:10.1109/CVPR.2019.00075. [23] 谢梦, 刘伟, 杨梦圆, 等. 深度卷积神经网络支持下的遥感影像飞机检测[J]. 测绘通报, 2019, 65(6): 19-23.DOI:10.13474/j.cnki.11-2246.2019.0177. [24] Zhang P, Su W H. Statistical inference on recall, precision and average precision under random selection[C]//2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. May 29-31, 2012, Chongqing, China. IEEE, 2012: 1348-1352.DOI:10.1109/FSKD.2012.6234049. |