[1] Liang J, Zhang J X, Deng K, et al. A new power-line extraction method based on airborne LiDAR point cloud data [C] //2011 International Symposium on Image and Data Fusion. August 9-11, 2011, Tengchong, Yunnan, China. IEEE, 2011: 1-4.DOI:10.1109/ISIDF.2011.6024293. [2] 麦晓明, 陈驰, 彭向阳, 等. 输电线路走廊三维可视化技术和系统设计[J]. 中国电力, 2015, 48(2): 98-103. [3] Sohn G, Jwa Y, Kim H B. Automatic powerline scene classification and reconstruction using airborne LiDAR data[J]. XXII ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012(1-3): 167-172. [4] Meng X, Currit N, Zhao K. Ground filtering algorithms for airborne LiDAR data: a review of critical issues[J]. Remote Sensing, 2010, 2(3): 833-860. DOI:10.3390/rs2030833. [5] 王和平, 夏少波, 谭弘武, 等. 电力巡线中机载激光点云数据处理的关键技术[J]. 地理空间信息, 2015, 13(5): 59-62.DOI:10.3969/j.issn.1672-4623.2015.05.020. [6] 穆超. 基于多种遥感数据的电力线走廊特征物提取方法研究 [D]. 武汉: 武汉大学, 2010. [7] Jung J, Pijanowski B C. LiDARHub: a free and open source software platform for web-based management, visualization and analysis of LiDAR data[J]. Geosciences Journal, 2015, 19(4): 741-749.DOI:10.1007/s12303-015-0003-8. [8] Deibe D, Amor M, Doallo R, et al. GVLiDAR: an interactive web-based visualization framework to support geospatial measures on lidar data[J]. International Journal of Remote Sensing, 2017, 38(3): 827-849.DOI:10.1080/01431161.2016.1271476. [9] Bohak C, Kim B H, Kim M Y. Web-based real-time LADAR data visualization with multi-user collaboration support [C] //International Conference on Augmented Reality, Virtual Reality and Computer Graphics. AVR 2018. LNCS, 10850. Springer, Cham, 2018: 214-224. DOI:10.1007/978-3-319-95270-3_17. [10] Ye M X, Wei S F, Zhang D M. An approach of web-based point cloud visualization without plug-in[J]. IOP Conference Series: Earth and Environmental Science, 2016, 46: 012011.DOI:10.1088/1755-1315/46/1/012011. [11] Cura R, Perret J, Paparoditis N. A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 127: 39-56.DOI:10.1016/j.isprsjprs.2016.06.012. [12] Mao B, Cao J. HTML5 based 3D visualization of high density LiDAR data and color information for agriculture applications [C]//Social Media Retrieval and Mining. Communications in Computer & Information Science, 2013, 387: 143-151. DOI:10.1007/978-3-642-41629-3_13. [13] Butler H, Finnegan D C, Gadomski P J, et al. Plas.io: open source, browser-based WebGL point cloud visualization[C] // AGU Fall Meeting. AGU Fall Meeting Abstracts, 2014: 3749. [14] Maravelakis E, Konstantaras A, Kabassi K, et al. 3DSYSTEK web-based point cloud viewer[C] //IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Application, July 7-9, 2014, Chania, Greece. IEEE, 2014: 262-266.DOI:10.1109/IISA.2014.6878726. [15] Schütz M. Potree: rendering large point clouds in Web browsers [D]. Vienna: Vienna University of Technology, 2016. [16] 王仲, 董欣, 陈晓鸥. SVG:一种支持可缩放矢量图形的Web浏览语言规范[J]. 中国图象图形学报, 2000, 5(12): 1039-1043.DOI:10.3969/j.issn.1006-8961.2000.12.012. [17] Zhang W M, Qi J B, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.DOI:10.3390/rs8060501. [18] 李泽. 三维点云压缩与基于WebGL的可视化研究[D]. 北京: 北京工业大学, 2016. [19] 叶梦轩, 危双丰, 张冬梅. 基于HTML5和WebGL的三维点云可视化方法[J]. 工程勘察, 2017, 45(1): 40-44, 63. |