[1] 夏娇阳,韩秀华,马毅,等.自由式滑雪运动员曲线滑道段内空气动力特性的CFD研究[J].天津体育学院学报,2014,29(3):190-192,202. DOI:10.13297/j.cnki.issn1005-0000.2014.03.008. [2] 刘瑞叶,黄磊.基于动态神经网络的风电场输出功率预测[J].电力系统自动化,2012,36(11):19-22,37. [3] Sideratos G, Hatziargyriou N D. An advanced statistical method for wind power forecasting[J]. IEEE Transactions on Power Systems, 2007, 22(1):258-265. DOI:10.1109/TPWRS.2006.889078. [4] An X L, Jiang D X, Zhao M H, et al. Short-term prediction of wind power using EMD and chaotic theory[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2):1036-1042. DOI:10.1016/j.cnsns.2011.06.003. [5] Costa A, Crespo A, Navarro J, et al. A review on the young history of the wind power short-term prediction[J]. Renewable and Sustainable Energy Reviews, 2008, 12(6):1725-1744. DOI:10.1016/j.rser.2007.01.015. [6] Kusiak A, Zheng H Y, Song Z. Short-term prediction of wind farm power: a data mining approach[J]. IEEE Transactions on Energy Conversion, 2009, 24(1):125-136. DOI:10.1109/TEC.2008.2006552. [7] Mathieu A, Lahellec A, Weill A. Evaluation of a numerical weather forecast model using boundary layer cloud-top temperature retrieved from AVHRR[J]. Monthly Weather Review, 2004, 132(4):915-928. DOI:10.1175/1520-0493(2014)132〈0915:EOANWF〉2.0.CO;2. [8] 丁藤,冯冬涵,林晓凡,等.基于修正后ARIMA-GARCH模型的超短期风速预测[J].电网技术,2017,41(6):1808-1814. DOI:10.13335/j.1000-3673.pst.2016.2357. [9] Chen P Y, Pedersen T, Bak-Jensen B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676. DOI:10.1109/TPWRS.2009.2033277. [10] Torres J L, García A, de Blas M, et al. Forecast of hourly average wind speed with ARMA models in Navarre (Spain)[J]. Solar Energy, 2005, 79(1): 65-77. DOI:10.1016/j.solener.2004.09.013. [11] Erdem E, Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction[J]. Applied Energy, 2011, 88(4):1405-1414. DOI:10.1016/j.apenergy.2010.10.031. [12] 王小娟,刘俊霞,胡兵,等.基于CS-SVR模型的短期风电功率预测[J].计算机测量与控制,2020,28(1):152-155. DOI:10.16526/j.cnki.11-4762/tp.2020.01.032. [13] 王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术, 2010,34(1):179-184. DOI:10.13335/j.1000-3673.pst.2010.01.008. [14] 彭春华,刘刚,孙惠娟.基于小波分解和微分进化支持向量机的风电场风速预测[J].电力自动化设备, 2012,32(1):9-13. DOI:10.3969/j.issn.1006-6047.2012.01.002. [15] 刘爱国,薛云涛,胡江鹭,等.基于GA优化SVM的风电功率的超短期预测[J].电力系统保护与控制,2015,43(2):90-95. [16] Büyükᶊahin Ü Ç, Ertekin. Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition[J]. Neurocomputing, 2019, 361:151-163. DOI:10.1016/j.neucom.2019.05.099. [17] 赵辉,华海增,岳有军,等.基于互补集合经验模态分解-模糊熵-深度信念网络的短期风速预测[J]. 科学技术与工程, 2019, 19(29): 137-143. DOI:10.3969/j.issn.1671-1815.2019.29.022. [18] 李华,任艺迪,谷瑞政,等.基于花朵授粉算法的组合式风速预测[J].科学技术与工程,2020,20(4):1436-1441. DOI:10.3969/j.issn.1671-1815.2020.04.021. [19] 颜宏文,卢格宇.CEEMD-WT和CNN在短期风速预测中的应用研究[J].计算机工程与应用,2018,54(9):224-230. [20] 杨正瓴,刘阳,张泽,等.采用最近历史观测值和PLSR进行空间相关性超短期风速预测[J].电网技术,2017,41(6):1815-1822. DOI:10.13335/j.1000-3673.pst.2016.2295. [21] 陈妮亚,钱政,孟晓风,等.基于空间相关法的风电场风速多步预测模型[J].电工技术学报,2013,28(5):15-21. DOI:10.19595/j.cnki.1000-6753.tces.2013.05.002. [22] 李文良,卫志农,孙国强,等.基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型[J].电力自动化设备,2009,29(6):89-92. DOI:10.3969/j.issn.1006-6047.2009.06.020. [23] 王东风,王富强,牛成林.小波分解层数及其组合分量对短期风速多步预测的影响分析[J].电力系统保护与控制,2014,42(8):82-89. [24] 田中大,李树江,王艳红,等.基于小波变换的风电场短期风速组合预测[J].电工技术学报,2015,30(9):112-120. DOI:10.19595/j.cnki.1000-6753.tces.2015.09.015. [25] 姜丽霞,王晾晾,吕佳佳,等.基于Hurst指数的黑龙江省作物生长季降水趋势研究[J].气象与环境学报,2020,36(2):70-77. DOI:10.3969/j.issn.1673-503X.2020.02.009. [26] 潘雅婧,王仰麟,彭建,等.基于小波与R/S方法的汉江中下游流域降水量时间序列分析[J].地理研究,2012,31(5):811-820. [27] Han Z T, Cheng M Z, Chen F X, et al. A spatial load forecasting method based on DBSCAN clustering and NAR neural network[J]. Journal of Physics: Conference Series, 2020, 1449(1): 012032. DOI:10.1088/1742-6596/1449/1/012032. [28] Wei S K, Zuo D P, Song J X. Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network[J]. Journal of Hydroinformatics, 2012, 14(4):974-991. DOI:10.2166/hydro.2012.143. [29] 葛宇生.基于NAR动态神经网络后验信息的概率水文预报[D].哈尔滨:东北农业大学,2016. [30] 向小东,黄飘.基于EEM D-NAR的突发传染病舆情热度预测研究[J].武汉理工大学学报(信息与管理工程版),2019,41(4):352-358. DOI:10.3963/j.issn.2095-3852.2019.04.002. |